高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
排序:
相关度
发表时间
每页显示:
10
20
30
50
用于多媒体加密的基于身份的密钥协商协议的安全性
刘永亮, 高文, 姚鸿勋, 黄铁军
2007, 29(4): 892-894. doi: 10.3724/SP.J.1146.2005.01076  刊出日期:2007-04-19
关键词: 安全性;基于身份的密钥协商;恶意攻击
最近Yi等(2002)提出了一个用于多媒体加密的基于身份的密钥协商协议。协议建立在Diffie-Hellman 密钥交换协议和RSA公钥密码体系之上。Yi等分析了协议的安全性,并认为该协议对于恶意攻击是鲁棒的。然而,本文证明该协议对于某些攻击如伪造秘密信息和篡改交换消息是脆弱的,并分析了该协议受到这些攻击的原因。本文指出由于该协议内在的缺陷,该协议可能难于改善。
两种环签名方案的安全性分析及其改进
王化群, 张力军, 赵君喜
2007, 29(1): 201-204. doi: 10.3724/SP.J.1146.2005.00574  刊出日期:2007-01-19
关键词: 环签名;双线性对;伪造攻击;GDP(Gap Diffie-Hellman)
通过对Xu(2004)和Zhang(2004)提出的两种环签名方案进行分析,指出了这两种环签名方案都容易受到群成员改变攻击(group-changing attack),并给出了攻击方法;另外,Zhang的方案还容易受到多已知签名存在伪造(multiple-known-signature existential forgery)攻击。为防范这两种攻击,对这两种环签名方案进行了改进,改进后的方案在最强的安全模型(Joseph, 2004提出)中仍是安全的。
基于多层感知卷积和通道加权的图像隐写检测
叶学义, 郭文风, 曾懋胜, 张珂绅, 赵知劲
2022, 44(8): 2949-2956. doi: 10.11999/JEIT210537  刊出日期:2022-08-17
关键词: 隐写检测, 卷积神经网络, 多层感知卷积, 通道加权
针对目前图像隐写检测模型中线性卷积层对高阶特征表达能力有限,以及各通道特征图没有区分的问题,该文构建了一个基于多层感知卷积和通道加权的卷积神经网络(CNN)隐写检测模型。该模型使用多层感知卷积(Mlpconv)代替传统的线性卷积,增强隐写检测模型对高阶特征的表达能力;同时引入通道加权模块,实现根据全局信息对每个卷积通道赋予不同的权重,增强有用特征并抑制无用特征,增强模型提取检测特征的质量。实验结果表明,该检测模型针对不同典型隐写算法及不同嵌入率,相比Xu-Net, Yedroudj-Net, Zhang-Net均有更高的检测准确率,与最优的Zhu-Net相比,准确率提高1.95%~6.15%。