2007, 29(1): 201-204.
doi: 10.3724/SP.J.1146.2005.00574
刊出日期:2007-01-19
通过对Xu(2004)和Zhang(2004)提出的两种环签名方案进行分析,指出了这两种环签名方案都容易受到群成员改变攻击(group-changing attack),并给出了攻击方法;另外,Zhang的方案还容易受到多已知签名存在伪造(multiple-known-signature existential forgery)攻击。为防范这两种攻击,对这两种环签名方案进行了改进,改进后的方案在最强的安全模型(Joseph, 2004提出)中仍是安全的。
2014, 36(5): 1139-1144.
doi: 10.3724/SP.J.1146.2013.01003
刊出日期:2014-05-19
该文利用飞行时间(Time-Of-Fligh, TOF)相机提供的距离图像,在运动历史图像的基础上提出一种基于多层运动历史图像的人体运动识别方法。计算距离轮廓序列的运动能量图作为整体运动信息,同时根据距离变化量,计算前向、后向的多层运动历史图像作为局部运动信息,共同组成多层运动历史图像。为了解决Hu矩对不连续或具有噪声的形状较为敏感的问题,引入R变换对每层运动历史图像进行特征提取,串联形成特征向量送入SVM进行分类识别。实验结果表明,该识别方法可以有效识别人体运动。
2022, 44(8): 2949-2956.
doi: 10.11999/JEIT210537
刊出日期:2022-08-17
针对目前图像隐写检测模型中线性卷积层对高阶特征表达能力有限,以及各通道特征图没有区分的问题,该文构建了一个基于多层感知卷积和通道加权的卷积神经网络(CNN)隐写检测模型。该模型使用多层感知卷积(Mlpconv)代替传统的线性卷积,增强隐写检测模型对高阶特征的表达能力;同时引入通道加权模块,实现根据全局信息对每个卷积通道赋予不同的权重,增强有用特征并抑制无用特征,增强模型提取检测特征的质量。实验结果表明,该检测模型针对不同典型隐写算法及不同嵌入率,相比Xu-Net, Yedroudj-Net, Zhang-Net均有更高的检测准确率,与最优的Zhu-Net相比,准确率提高1.95%~6.15%。