2015, 37(8): 1994-1999.
doi: 10.11999/JEIT141635
刊出日期:2015-08-19
该文分析了He等人(2014)提出的无证书签名方案和Ming等人(2014)提出的无证书聚合签名方案的安全性,指出Ming方案存在密钥生成中心(KGC)被动攻击,He方案存在KGC被动攻击和KGC主动攻击。该文描述了KGC对两个方案的攻击过程,分析了两个方案存在KGC攻击的原因,最后对Ming方案提出了两类改进。改进方案不仅克服了原方案的安全性问题,同时也保持了原方案聚合签名长度固定的优势。
2007, 29(1): 201-204.
doi: 10.3724/SP.J.1146.2005.00574
刊出日期:2007-01-19
通过对Xu(2004)和Zhang(2004)提出的两种环签名方案进行分析,指出了这两种环签名方案都容易受到群成员改变攻击(group-changing attack),并给出了攻击方法;另外,Zhang的方案还容易受到多已知签名存在伪造(multiple-known-signature existential forgery)攻击。为防范这两种攻击,对这两种环签名方案进行了改进,改进后的方案在最强的安全模型(Joseph, 2004提出)中仍是安全的。
2015, 37(8): 1971-1977.
doi: 10.11999/JEIT141604
刊出日期:2015-08-19
为了分析ZUC序列密码算法在相关性能量分析攻击方面的免疫能力,该文进行了相关研究。为了提高攻击的针对性,该文提出了攻击方案的快速评估方法,并据此给出了ZUC相关性能量分析攻击方案。最后基于ASIC开发环境构建仿真验证平台,对攻击方案进行了验证。实验结果表明该方案可成功恢复48 bit密钥,说明ZUC并不具备相关性能量分析攻击的免疫力,同时也证实了攻击方案快速评估方法的有效性。相比Tang Ming等采用随机初始向量进行差分能量攻击,初始向量样本数达到5000时才能观察到明显的差分功耗尖峰,该文的攻击方案只需256个初始向量,且攻击效果更为显著。
2022, 44(8): 2949-2956.
doi: 10.11999/JEIT210537
刊出日期:2022-08-17
针对目前图像隐写检测模型中线性卷积层对高阶特征表达能力有限,以及各通道特征图没有区分的问题,该文构建了一个基于多层感知卷积和通道加权的卷积神经网络(CNN)隐写检测模型。该模型使用多层感知卷积(Mlpconv)代替传统的线性卷积,增强隐写检测模型对高阶特征的表达能力;同时引入通道加权模块,实现根据全局信息对每个卷积通道赋予不同的权重,增强有用特征并抑制无用特征,增强模型提取检测特征的质量。实验结果表明,该检测模型针对不同典型隐写算法及不同嵌入率,相比Xu-Net, Yedroudj-Net, Zhang-Net均有更高的检测准确率,与最优的Zhu-Net相比,准确率提高1.95%~6.15%。