2014, 36(5): 1139-1144.
doi: 10.3724/SP.J.1146.2013.01003
刊出日期:2014-05-19
该文利用飞行时间(Time-Of-Fligh, TOF)相机提供的距离图像,在运动历史图像的基础上提出一种基于多层运动历史图像的人体运动识别方法。计算距离轮廓序列的运动能量图作为整体运动信息,同时根据距离变化量,计算前向、后向的多层运动历史图像作为局部运动信息,共同组成多层运动历史图像。为了解决Hu矩对不连续或具有噪声的形状较为敏感的问题,引入R变换对每层运动历史图像进行特征提取,串联形成特征向量送入SVM进行分类识别。实验结果表明,该识别方法可以有效识别人体运动。
2025, 47(3): 758-768.
doi: 10.11999/JEIT240796
刊出日期:2025-03-01
在车载网络(VANETs)中,联邦学习(FL)通过协同训练机器学习模型,实现了车辆间的数据隐私保护,并提高了整体模型的性能。然而,FL在VANETs中的应用仍面临诸多挑战,如模型泄露风险、训练结果验证困难以及高计算和通信成本等问题。针对这些问题,该文提出一种面向联邦学习的可验证隐私保护批量聚合方案。首先,该方案基于Boneh-Lynn-Shacham (BLS)动态短群聚合签名技术,保护了客户端与路边单元(RSU)交互过程中的数据完整性,确保全局梯度模型更新与共享过程的不可篡改性。当出现异常结果时,方案利用群签名的特性实现车辆的可追溯性。其次,结合改进的Cheon-Kim-Kim-Song (CKKS)线性同态哈希算法,对梯度聚合结果进行验证,确保在联邦学习的聚合过程中保持客户端梯度的机密性,并验证聚合结果的准确性,防止服务器篡改数据导致模型训练无效的问题。此外,该方案还支持车辆在部分掉线的情况下继续更新模型,保障系统的稳定性。实验结果表明,与现有方案相比,该方案在提升数据隐私安全性和结果的可验证性的同时,保证了较高效率。