2006, 28(6): 1031-1035.
刊出日期:2006-06-19
该文提出一组基于广义局部沃尔什变换(GLWT)的纹理特征。首先给出局部沃尔什变换(LWT)的定义,并在空域中对其加以推广,用以提取图像的局部纹理信息;然后在一个宏窗口中估计12个GLWT系数的二阶矩作为图像的纹理特征。对这组纹理特征的鉴别性能进行了分析,并与Haralick(1973),Wang Li(1990),以及Yu Hui提出的纹理特征进行了比较。实验结果表明,该文提出的纹理特征具有更好的鉴别性能和分类能力。
2015, 37(1): 29-36.
doi: 10.11999/JEIT140129
刊出日期:2015-01-19
在目标识别中,对于样本数较多且分布复杂的数据,若将所有训练样本用来训练一个单一的分类器,会增加分类器的训练复杂度,且容易忽视样本的内在结构,不利于分类。因此人们提出了混合专家系统(ME),即将训练样本集划分为多个训练样本子集,并在每个子集上单独训练分类器。但是传统ME系统需要人为确定专家个数,并且每个子集的学习独立于后端的任务,如分类。该文提出一种基于Dirichlet过程(DP)混合隐变量(LV)支持向量机(SVM)模型(DPLVSVM)的目标识别算法,采用DP混合模型自动确定样本聚类个数,同时每个聚类中使用线性隐变量SVM(LVSVM)进行分类。不同于以往算法,DPLVSVM 将聚类过程和分类器的训练过程联合优化,保证了各个子集中样本的分布上的一致性和可分性,而且可以利用Gibbs采样技术对模型参数进行简便有效的估计。基于人工数据集、公共数据集以及雷达实测数据的实验验证了该文方法的有效性。
2003, 25(4): 573-576.
刊出日期:2003-04-19
关键词:
量化; 运动补偿; 全零系数块
用H.263标准对甚低码率图像编码时,经过帧间预测后得到的运动补偿数据通常很小,对这些数据再进行DCT和量化后往往成为全零块,Alice Yu算法和周算法是预先判别全零系数块的较为有效的方法,但在对较为复杂的序列图像进行预测时分别出现了较大程度的误判和漏判。针对这些缺点,该文提出了一种新的全零系数块的判别方法,它具有能随量化级的变化自适应地调整全零块的判断阈值、无需任何附加运算和对图像序列内容复杂程度不敏感的优点,将该方法应用于H.263编码器中,对Miss America和News图像序列进行仿真实验。实验表明,大约有40%-80%的块可以在做DCT和量化前被判别为全零系数块,大大减少了编码的时间,同时图像质量的下降控制在0.0005 dB以内。