2014, 36(5): 1126-1132.
doi: 10.3724/SP.J.1146.2013.00400
刊出日期:2014-05-19
该文针对图像融合领域内难于对先验知识加以利用的问题提出一种新的有监督学习的Takagi Sugeno Kang (TSK)模糊系统图像融合方法。该方法通过引入TSK模糊系统构建标准图像融合图像库进行学习,将学习准则记录下来形成融合模型,并指导新的图像融合过程。不同于传统方法,该方法可以有效地避免模型参数择优的难题,在融合图像质量和适用范围方面表现出一定的优势。从单一类型图像融合和多种类型图像融合两个角度进行了实验研究,实验结果说明该方法的有效性。
2021, 43(8): 2121-2127.
doi: 10.11999/JEIT200769
刊出日期:2021-08-10
该文提出一种通用的时间数字转换器(TDC)码密度校准信号产生方法,该方法基于相干采样理论,通过合理设置TDC主时钟和校准信号之间的频率差,结合输出信号保持电路,产生校准用的随机信号,在码密度校准过程中,随机信号均匀分布在TDC的延时路径上,实现对TDC的bin-by-bin校准。基于Xilinx公司的28 nm工艺的Kintex-7 现场可编程门阵列(FPGA)内部的进位链实现一种plain TDC,利用该方法校准plain TDC的码宽(抽头延迟时间),研究校准了2抽头方式下的TDC的性能参数,时间分辨率(对应TDC的最低有效位,Least Significant Bit, LSB)为24.9 ps,微分非线性为(–0.84~3.1)LSB,积分非线性为(–5.0~2.2)LSB。文中所述的校准方法采用时钟逻辑资源实现,多次测试考核结果表明,单个延时单元的标准差优于0.5 ps。该校准方法采用时钟逻辑资源代替组合逻辑资源,重复性、稳定性较好,实现了对plain TDC的高精度自动校准。该方法同样适用于其他类型的TDC的码密度校准。
2007, 29(11): 2669-2671.
doi: 10.3724/SP.J.1146.2006.00604
刊出日期:2007-11-19
关键词:
语音编码;基音量化;波形内插
基音在语音编码中通常采用7bit无失真均匀量化。由于浊音段语音的基音普遍具有缓慢渐变的特点,为了更有效地去除前后帧基音之间存在的相关性,该文基于Eriksson和Kang提出的4bit基音量化算法,针对汉语语音进行研究,实现了一套4~6bit基音量化算法。该算法计算简单,无需码书存储。将此基音量化方案应用于WI模型和WI编码器,主观A/B听力测试结果表明,该方案在高效量化基音的同时保证了合成语音质量几乎没有损失,完全满足低速率WI编码器对量化基音的要求。
2015, 37(9): 2082-2088.
doi: 10.11999/JEIT150074
刊出日期:2015-09-19
经典数据驱动型TSK(Takagi-Sugeno-Kang)模糊系统在获取模糊规则时,会考虑数据的所有特征空间,其带来一个重要缺陷:如果数据的特征空间维数过高,则系统获取的模糊规则繁杂,使系统复杂度增加而导致解释性下降。该文针对此缺陷,探讨了一种基于模糊子空间聚类的〇阶L2型TSK模糊系统(Fuzzy Subspace Clustering based zero-order L2- norm TSK Fuzzy System, FSC-0-L2-TSK-FS)构建新方法。新方法构建的模糊系统不仅能缩减模糊规则前件的特征空间,而且获取的模糊规则可对应于不同的特征子空间,从而具有更接近人类思维的推理机制。模拟和真实数据集上的建模结果表明,新方法增强了面对高维数据所建模型的解释性,同时所建模型得到了较之于一些经典方法更好或可比较的泛化性能。