高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
排序:
相关度
发表时间
每页显示:
10
20
30
50
一种改进的区间型不确定数据模糊聚类方法
肖满生, 张龙信, 张晓丽, 胡永祥
2020, 42(8): 1968-1974. doi: 10.11999/JEIT190591  刊出日期:2020-08-18
关键词: 区间型数据, 模糊C均值, 影响因子, 特征变换

针对区间型不确定数据的特点,该文提出一种改进的模糊C均值聚类算法(IU-IFCM)。首先对区间型数据进行特征变换,由p维特征映射成由2p维特征组成的实数据,然后考虑区间中值与区间大小关系,设计一种样本距离计算方法,通过模糊C均值实现对区间型样本聚类。理论分析与对比实验表明,该算法的划分系数(PC)及正确等级(CR)值比其它方法平均提高10%以上,表明有更好的聚类精度,对当前大数据环境下不确定数据的分类提供了一种新的解决方案。