2008, 30(5): 1109-1112.
doi: 10.3724/SP.J.1146.2006.01760
刊出日期:2008-05-19
为快速生成高质量混淆网络,该文提出一种最大后验弧主导的快速生成算法。它只需遍历一遍Lattice,具有线性时间复杂度。采用K-L散度(Kullback-Leibler Divergence,KLD)来度量弧标号之间的发音相似性,改善了混淆网络生成中弧对齐的准确性。实验结果显示,所提算法在生成速度上和Xue的快速算法是可比的,而生成质量更好。通过采用KLD作为弧标号相似性测度,生成混淆网络的质量得到了进一步提高。
2015, 37(4): 881-886.
doi: 10.11999/JEIT140831
刊出日期:2015-04-19
目前基于标签的Grbner基算法大多是Buchberger型的,涉及矩阵型算法的文献往往是为了进行复杂度分析,而不考虑实际的效率。该文从实际应用出发,给出矩阵型Gao-Volny-Wang(GVW)算法的一个实例,提出算法层次的优化设计方法。同时,该文还给出一个高效的约化准则。通过实验,该文比较了算法可用的各项准则及策略。实验结果表明,该文的矩阵型GVW实例在准则和策略的选取上是最优的。并且,矩阵型GVW在某些多项式系统(例如,Cyclic系列和Katsura系列多项式系统)下比Buchberger型GVW要快2~6倍。