高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
排序:
相关度
发表时间
每页显示:
10
20
30
50
无证书聚合签名方案的安全性分析和改进
张玉磊, 李臣意, 王彩芬, 张永洁
2015, 37(8): 1994-1999. doi: 10.11999/JEIT141635  刊出日期:2015-08-19
关键词: 密码学, 聚合签名, 无证书签名, 密钥生成中心攻击, 选择消息攻击, 计算Diffie-Hellman 困难问题
该文分析了He等人(2014)提出的无证书签名方案和Ming等人(2014)提出的无证书聚合签名方案的安全性,指出Ming方案存在密钥生成中心(KGC)被动攻击,He方案存在KGC被动攻击和KGC主动攻击。该文描述了KGC对两个方案的攻击过程,分析了两个方案存在KGC攻击的原因,最后对Ming方案提出了两类改进。改进方案不仅克服了原方案的安全性问题,同时也保持了原方案聚合签名长度固定的优势。
d-元广义分圆序列的线性复杂度及自相关函数性质分析
柯品惠, 李瑞芳, 张胜元
2012, 34(12): 2881-2884. doi: 10.3724/SP.J.1146.2012.00804  刊出日期:2012-12-19
关键词: 网络安全, 广义分圆, 线性复杂度, 自相关
该文推广了Liu Fang等人(2010)给出的周期为pn, p为奇素数,n为正整数的广义分圆序列的构造,并确定了新构造序列的线性复杂度和自相关函数值的分布。结果表明,推广的构造保持了原构造的高线性复杂度等伪随机特性。由于取值更灵活,较之原构造新构造序列的数量要大得多。
两种环签名方案的安全性分析及其改进
王化群, 张力军, 赵君喜
2007, 29(1): 201-204. doi: 10.3724/SP.J.1146.2005.00574  刊出日期:2007-01-19
关键词: 环签名;双线性对;伪造攻击;GDP(Gap Diffie-Hellman)
通过对Xu(2004)和Zhang(2004)提出的两种环签名方案进行分析,指出了这两种环签名方案都容易受到群成员改变攻击(group-changing attack),并给出了攻击方法;另外,Zhang的方案还容易受到多已知签名存在伪造(multiple-known-signature existential forgery)攻击。为防范这两种攻击,对这两种环签名方案进行了改进,改进后的方案在最强的安全模型(Joseph, 2004提出)中仍是安全的。
一种适于受限资源环境的远程用户认证方案的分析与改进
汪定, 马春光, 翁臣, 贾春福
2012, 34(10): 2520-2526. doi: 10.3724/SP.J.1146.2012.00376  刊出日期:2012-10-19
关键词: 身份认证, 智能卡, 离线口令猜测攻击, 平行会话攻击
该文讨论了Fang等人(2011)新近提出的一个安全高效的基于智能卡的远程用户口令认证方案,指出原方案无法实现所声称的抗离线口令猜测攻击,对平行会话攻击和已知密钥攻击是脆弱的,并且存在用户口令更新友好性差问题。给出一个改进方案,对其进行了安全性和效率分析。分析结果表明,改进方案弥补了原方案的安全缺陷,保持了较高的效率,适用于安全需求较高的资源受限应用环境。
ZUC序列密码算法的选择IV相关性能量分析攻击
严迎建, 杨昌盛, 李伟, 张立朝
2015, 37(8): 1971-1977. doi: 10.11999/JEIT141604  刊出日期:2015-08-19
关键词: 密码学, 序列密码, ZUC, 能量分析攻击, 评估
为了分析ZUC序列密码算法在相关性能量分析攻击方面的免疫能力,该文进行了相关研究。为了提高攻击的针对性,该文提出了攻击方案的快速评估方法,并据此给出了ZUC相关性能量分析攻击方案。最后基于ASIC开发环境构建仿真验证平台,对攻击方案进行了验证。实验结果表明该方案可成功恢复48 bit密钥,说明ZUC并不具备相关性能量分析攻击的免疫力,同时也证实了攻击方案快速评估方法的有效性。相比Tang Ming等采用随机初始向量进行差分能量攻击,初始向量样本数达到5000时才能观察到明显的差分功耗尖峰,该文的攻击方案只需256个初始向量,且攻击效果更为显著。
基于多层感知卷积和通道加权的图像隐写检测
叶学义, 郭文风, 曾懋胜, 张珂绅, 赵知劲
2022, 44(8): 2949-2956. doi: 10.11999/JEIT210537  刊出日期:2022-08-17
关键词: 隐写检测, 卷积神经网络, 多层感知卷积, 通道加权
针对目前图像隐写检测模型中线性卷积层对高阶特征表达能力有限,以及各通道特征图没有区分的问题,该文构建了一个基于多层感知卷积和通道加权的卷积神经网络(CNN)隐写检测模型。该模型使用多层感知卷积(Mlpconv)代替传统的线性卷积,增强隐写检测模型对高阶特征的表达能力;同时引入通道加权模块,实现根据全局信息对每个卷积通道赋予不同的权重,增强有用特征并抑制无用特征,增强模型提取检测特征的质量。实验结果表明,该检测模型针对不同典型隐写算法及不同嵌入率,相比Xu-Net, Yedroudj-Net, Zhang-Net均有更高的检测准确率,与最优的Zhu-Net相比,准确率提高1.95%~6.15%。