2021, 43(5): 1258-1266.
doi: 10.11999/JEIT200099
刊出日期:2021-05-18
为提升对SAR图像乘性相干斑的抑制水平与边缘保护性能,该文提出了一种可自适应调节滤波强度(AFS)的SAR图像非局部平均(NLM)抑斑新算法(AFS-NLM)。该算法利用Frost滤波图像计算的局部均值与方差来改善SAR图像场景参量的估计,形成了一种能更好刻画SAR图像同质区与边缘区的改进Kuan滤波系数。利用局部均值比与改进Kuan滤波系数分别作为新的相似性测量参量与自适应衰减因子,构建了一种更适应SAR图像乘性噪声特性的改进NLM滤波。利用偏平滑参数与偏边缘保护参数控制下的改进NLM滤波,分别替代经典Kuan滤波模型中的像素局部均值与自身灰度值作为加权项,并采用由改进Kuan滤波系数构建的自适应调节因子对二者进行加权平均,从而形成了一种可自适应调节滤波强度的加权滤波新模型。实验表明,该文算法与近期多种先进算法相比,具有更好的相干斑抑制与边缘保护性能。