[1] |
魏松杰, 蒋鹏飞, 袁秋壮, 等. 深度神经网络下的SAR舰船目标检测与区分模型[J]. 西北工业大学学报, 2019, 37(3): 587–593. doi: 10.1051/jnwpu/20193730587WEI Songjie, JIANG Pengfei, YUAN Qiuzhuang, et al. Detection and recognition of SAR small ship objects using deep neural network[J]. Journal of Northwestern Polytechnical University, 2019, 37(3): 587–593. doi: 10.1051/jnwpu/20193730587
|
[2] |
LIU Su, ZHANG Gong, and LIU Wenbo. Group sparse representation based dictionary learning for SAR image despeckling[J]. IEEE Access, 2019, 7: 30809–30817. doi: 10.1109/ACCESS.2019.2859825
|
[3] |
李煜, 陈杰, 张渊智. 合成孔径雷达海面溢油探测研究进展[J]. 电子与信息学报, 2019, 41(3): 751–762. doi: 10.11999/JEIT180468LI Yu, CHEN Jie, and ZHANG Yuanzhi. Progress in research on marine oil spills detection using synthetic aperture radar[J]. Journal of Electronics &Information Technology, 2019, 41(3): 751–762. doi: 10.11999/JEIT180468
|
[4] |
吴元. 一种基于参数更新的机载SAR图像目标定位方法[J]. 电子与信息学报, 2019, 41(5): 1063–1068. doi: 10.11999/JEIT180564WU Yuan. An airborne SAR image target location algorithm based on parameter refining[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1063–1068. doi: 10.11999/JEIT180564
|
[5] |
彭书娟, 曲长文, 李建伟, 等. 基于ROEWA算子局部活动轮廓的SAR图像分割算法[J]. 系统工程与电子技术, 2019, 41(2): 280–290. doi: 10.3969/j.issn.1001-506X.2019.02.09PENG Shujuan, QU Changwen, LI Jianwei, et al. Local motion contour segmentation algorithm of SAR image based on ROEWA operator[J]. Systems Engineering and Electronics, 2019, 41(2): 280–290. doi: 10.3969/j.issn.1001-506X.2019.02.09
|
[6] |
韩子硕, 王春平. 基于改进FCM与MRF的SAR图像分割[J]. 系统工程与电子技术, 2019, 41(8): 1726–1734. doi: 10.3969/j.issn.1001-506X.2019.08.08HAN Zishuo and WANG Chunping. SAR image segmentation based on improved FCM and MRF[J]. Systems Engineering and Electronics, 2019, 41(8): 1726–1734. doi: 10.3969/j.issn.1001-506X.2019.08.08
|
[7] |
YU Meiting, QUAN Sinong, KUANG Gangyao, et al. SAR target recognition via joint sparse and dense representation of monogenic signal[J]. Remote Sensing, 2019, 11(22): 2676. doi: 10.3390/rs11222676
|
[8] |
LEE J S. Digital image enhancement and noise filtering by use of local statistics[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1980, PAMI-2(2): 165–168. doi: 10.1109/TPAMI.1980.4766994
|
[9] |
KUAN D T, SAWCHUK A A, STRAND T C, et al. Adaptive noise smoothing filter for images with signal-dependent noise[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985, PAMI-7(2): 165–177. doi: 10.1109/TPAMI.1985.4767641
|
[10] |
MA Xiaoshuang and WU Penghai. Multitemporal SAR image despeckling based on a scattering covariance matrix of image patch[J]. Sensors, 2019, 19(14): 3057. doi: 10.3390/s19143057
|
[11] |
BHUIYAN M I H, AHMAD M, and SWAMY M N S. Spatially adaptive wavelet-based method using the cauchy prior for denoising the SAR images[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2007, 17(4): 500–507. doi: 10.1109/TCSVT.2006.888020
|
[12] |
CHOI H and JEONG J. Speckle noise reduction technique for SAR images using statistical characteristics of speckle noise and discrete wavelet transform[J]. Remote Sensing, 2019, 11(10): 1184. doi: 10.3390/rs11101184
|
[13] |
GAO Fei, XUE Xiangshang, SUN Jinping, et al. A SAR image despeckling method based on two-dimensional S transform shrinkage[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(5): 3025–3034. doi: 10.1109/TGRS.2015.2510161
|
[14] |
YU Yongjian and ACTON S T. Speckle reducing anisotropic diffusion[J]. IEEE Transactions on Image Processing, 2002, 11(11): 1260–1270. doi: 10.1109/TIP.2002.804276
|
[15] |
ZHU Lei, ZHAO Xiaotian, and GU Meihua. SAR image despeckling using improved detail-preserving anisotropic diffusion[J]. Electronics Letters, 2014, 50(15): 1092–1093. doi: 10.1049/el.2014.0293
|
[16] |
MISHRA D, CHAUDHURY S, SARKAR M, et al. Edge probability and pixel relativity-based speckle reducing anisotropic diffusion[J]. IEEE Transactions on Image Processing, 2018, 27(2): 649–664. doi: 10.1109/TIP.2017.2762590
|
[17] |
BUADES A, COLL B, and MOREL J M. A non-local algorithm for image denoising[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 60–65. doi: 10.1109/CVPR.2005.38.
|
[18] |
PARRILLI S, PODERICO M, ANGELINO C V, et al. A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2): 606–616. doi: 10.1109/TGRS.2011.2161586
|
[19] |
CHEN Shaobo, HOU Jianhua, ZHANG Hua, et al. De-speckling method based on non-local means and coefficient variation of SAR image[J]. Electronics Letters, 2014, 50(18): 1314–1316. doi: 10.1049/el.2014.0630
|
[20] |
朱磊, 蔡飞飞, 王延年, 等. SAR图像相干斑的非局部平均滤波算法[J]. 西安交通大学学报, 2018, 52(4): 98–104. doi: 10.7652/xjtuxb201804014ZHU Lei, CAI Feifei, WANG Yannian, et al. A non-local means filtering algorithm for despeckling of SAR images[J]. Journal of Xi’an Jiaotong University, 2018, 52(4): 98–104. doi: 10.7652/xjtuxb201804014
|
[21] |
FROST V S, STILES J A, SHANMUGAN K S, et al. A model for radar images and its application to adaptive digital filtering of multiplicative noise[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1982, PAMI-4(2): 157–165. doi: 10.1109/TPAMI.1982.4767223
|
[22] |
TOUZI R, LOPES A, and BOUSQUET P. A statistical and geometrical edge detector for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(6): 764–773. doi: 10.1109/36.7708
|
[23] |
朱磊, 水鹏朗, 章为川, 等. 利用区域划分的合成孔径雷达图像相干斑抑制算法[J]. 西安交通大学学报, 2012, 46(10): 83–88, 100.ZHU Lei, SHUI Penglang, ZHANG Weichuan, et al. A despeckling algorithm for synthetic aperture radar images using region subdivision[J]. Journal of Xi’an Jiaotong University, 2012, 46(10): 83–88, 100.
|