高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自适应调节滤波强度的SAR图像非局部平均抑斑算法

朱磊 李敬曼 潘杨 刘玉春 胡晓

朱磊, 李敬曼, 潘杨, 刘玉春, 胡晓. 自适应调节滤波强度的SAR图像非局部平均抑斑算法[J]. 电子与信息学报, 2021, 43(5): 1258-1266. doi: 10.11999/JEIT200099
引用本文: 朱磊, 李敬曼, 潘杨, 刘玉春, 胡晓. 自适应调节滤波强度的SAR图像非局部平均抑斑算法[J]. 电子与信息学报, 2021, 43(5): 1258-1266. doi: 10.11999/JEIT200099
Lei ZHU, Jingman LI, Yang PAN, Yuchun LIU, Xiao HU. SAR Image Despeckling Algorithm Using Non-Local Means with Adaptive Filtering Strength[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1258-1266. doi: 10.11999/JEIT200099
Citation: Lei ZHU, Jingman LI, Yang PAN, Yuchun LIU, Xiao HU. SAR Image Despeckling Algorithm Using Non-Local Means with Adaptive Filtering Strength[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1258-1266. doi: 10.11999/JEIT200099

自适应调节滤波强度的SAR图像非局部平均抑斑算法

doi: 10.11999/JEIT200099
基金项目: 国家自然科学基金(61971339),陕西省重点研发计划(2019GY-113),西安市科技局创新引导计划(201805030YD8CG14(6))
详细信息
    作者简介:

    朱磊:男,1979年生,教授,硕士生导师,研究方向为图像处理、嵌入式系统应用

    李敬曼:女,1996年生,硕士生,研究方向为图像处理

    潘杨:女,1983年生,讲师,研究方向为数字信号处理、声场仿真与声信号处理

    刘玉春:男,1979年生,副教授,研究方向为信号与信号处理

    胡晓:女,1993年生,硕士生,研究方向为图像处理

    通讯作者:

    朱磊 zhulei791014@163.com

  • 中图分类号: TN911.73; TP751

SAR Image Despeckling Algorithm Using Non-Local Means with Adaptive Filtering Strength

Funds: The National Natural Science Foundation of China (61971339), The Shaanxi Provincial Key Research and Development Program (2019GY-113), The Xi’an Science and Technology Bureau Innovation and Guidance Program (201805030YD8CG14(6))
  • 摘要: 为提升对SAR图像乘性相干斑的抑制水平与边缘保护性能,该文提出了一种可自适应调节滤波强度(AFS)的SAR图像非局部平均(NLM)抑斑新算法(AFS-NLM)。该算法利用Frost滤波图像计算的局部均值与方差来改善SAR图像场景参量的估计,形成了一种能更好刻画SAR图像同质区与边缘区的改进Kuan滤波系数。利用局部均值比与改进Kuan滤波系数分别作为新的相似性测量参量与自适应衰减因子,构建了一种更适应SAR图像乘性噪声特性的改进NLM滤波。利用偏平滑参数与偏边缘保护参数控制下的改进NLM滤波,分别替代经典Kuan滤波模型中的像素局部均值与自身灰度值作为加权项,并采用由改进Kuan滤波系数构建的自适应调节因子对二者进行加权平均,从而形成了一种可自适应调节滤波强度的加权滤波新模型。实验表明,该文算法与近期多种先进算法相比,具有更好的相干斑抑制与边缘保护性能。
  • 图  1  自适应调节NLM滤波强度的SAR图像抑斑新模型框图

    图  2  Kuan滤波系数与改进Kuan滤波系数对比

    图  3  两种方法估计的NLM滤波加权系数图对比

    图  4  实验测试用真实SAR图像

    图  5  各算法对图4两幅真实SAR图像的抑斑图及其边缘检测图对比

    表  1  4种算法对真实SAR图像抑斑参数比较

    抑斑算法${V_{\rm{ENL}}}$${V_{\rm{EPI}}}$
    A区B区C区D区图4(a)图4(b)
    SAR-BM3D755.8332.01610.81703.10.9440.771
    NL-CV2070.0788.91001.13171.90.4490.400
    MR-NLM2485.4826.11774.14100.10.9580.780
    AFS-NLM5064.62312.83555.3241150.9630.824
    下载: 导出CSV
  • [1] 魏松杰, 蒋鹏飞, 袁秋壮, 等. 深度神经网络下的SAR舰船目标检测与区分模型[J]. 西北工业大学学报, 2019, 37(3): 587–593. doi: 10.1051/jnwpu/20193730587

    WEI Songjie, JIANG Pengfei, YUAN Qiuzhuang, et al. Detection and recognition of SAR small ship objects using deep neural network[J]. Journal of Northwestern Polytechnical University, 2019, 37(3): 587–593. doi: 10.1051/jnwpu/20193730587
    [2] LIU Su, ZHANG Gong, and LIU Wenbo. Group sparse representation based dictionary learning for SAR image despeckling[J]. IEEE Access, 2019, 7: 30809–30817. doi: 10.1109/ACCESS.2019.2859825
    [3] 李煜, 陈杰, 张渊智. 合成孔径雷达海面溢油探测研究进展[J]. 电子与信息学报, 2019, 41(3): 751–762. doi: 10.11999/JEIT180468

    LI Yu, CHEN Jie, and ZHANG Yuanzhi. Progress in research on marine oil spills detection using synthetic aperture radar[J]. Journal of Electronics &Information Technology, 2019, 41(3): 751–762. doi: 10.11999/JEIT180468
    [4] 吴元. 一种基于参数更新的机载SAR图像目标定位方法[J]. 电子与信息学报, 2019, 41(5): 1063–1068. doi: 10.11999/JEIT180564

    WU Yuan. An airborne SAR image target location algorithm based on parameter refining[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1063–1068. doi: 10.11999/JEIT180564
    [5] 彭书娟, 曲长文, 李建伟, 等. 基于ROEWA算子局部活动轮廓的SAR图像分割算法[J]. 系统工程与电子技术, 2019, 41(2): 280–290. doi: 10.3969/j.issn.1001-506X.2019.02.09

    PENG Shujuan, QU Changwen, LI Jianwei, et al. Local motion contour segmentation algorithm of SAR image based on ROEWA operator[J]. Systems Engineering and Electronics, 2019, 41(2): 280–290. doi: 10.3969/j.issn.1001-506X.2019.02.09
    [6] 韩子硕, 王春平. 基于改进FCM与MRF的SAR图像分割[J]. 系统工程与电子技术, 2019, 41(8): 1726–1734. doi: 10.3969/j.issn.1001-506X.2019.08.08

    HAN Zishuo and WANG Chunping. SAR image segmentation based on improved FCM and MRF[J]. Systems Engineering and Electronics, 2019, 41(8): 1726–1734. doi: 10.3969/j.issn.1001-506X.2019.08.08
    [7] YU Meiting, QUAN Sinong, KUANG Gangyao, et al. SAR target recognition via joint sparse and dense representation of monogenic signal[J]. Remote Sensing, 2019, 11(22): 2676. doi: 10.3390/rs11222676
    [8] LEE J S. Digital image enhancement and noise filtering by use of local statistics[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1980, PAMI-2(2): 165–168. doi: 10.1109/TPAMI.1980.4766994
    [9] KUAN D T, SAWCHUK A A, STRAND T C, et al. Adaptive noise smoothing filter for images with signal-dependent noise[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985, PAMI-7(2): 165–177. doi: 10.1109/TPAMI.1985.4767641
    [10] MA Xiaoshuang and WU Penghai. Multitemporal SAR image despeckling based on a scattering covariance matrix of image patch[J]. Sensors, 2019, 19(14): 3057. doi: 10.3390/s19143057
    [11] BHUIYAN M I H, AHMAD M, and SWAMY M N S. Spatially adaptive wavelet-based method using the cauchy prior for denoising the SAR images[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2007, 17(4): 500–507. doi: 10.1109/TCSVT.2006.888020
    [12] CHOI H and JEONG J. Speckle noise reduction technique for SAR images using statistical characteristics of speckle noise and discrete wavelet transform[J]. Remote Sensing, 2019, 11(10): 1184. doi: 10.3390/rs11101184
    [13] GAO Fei, XUE Xiangshang, SUN Jinping, et al. A SAR image despeckling method based on two-dimensional S transform shrinkage[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(5): 3025–3034. doi: 10.1109/TGRS.2015.2510161
    [14] YU Yongjian and ACTON S T. Speckle reducing anisotropic diffusion[J]. IEEE Transactions on Image Processing, 2002, 11(11): 1260–1270. doi: 10.1109/TIP.2002.804276
    [15] ZHU Lei, ZHAO Xiaotian, and GU Meihua. SAR image despeckling using improved detail-preserving anisotropic diffusion[J]. Electronics Letters, 2014, 50(15): 1092–1093. doi: 10.1049/el.2014.0293
    [16] MISHRA D, CHAUDHURY S, SARKAR M, et al. Edge probability and pixel relativity-based speckle reducing anisotropic diffusion[J]. IEEE Transactions on Image Processing, 2018, 27(2): 649–664. doi: 10.1109/TIP.2017.2762590
    [17] BUADES A, COLL B, and MOREL J M. A non-local algorithm for image denoising[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 60–65. doi: 10.1109/CVPR.2005.38.
    [18] PARRILLI S, PODERICO M, ANGELINO C V, et al. A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2): 606–616. doi: 10.1109/TGRS.2011.2161586
    [19] CHEN Shaobo, HOU Jianhua, ZHANG Hua, et al. De-speckling method based on non-local means and coefficient variation of SAR image[J]. Electronics Letters, 2014, 50(18): 1314–1316. doi: 10.1049/el.2014.0630
    [20] 朱磊, 蔡飞飞, 王延年, 等. SAR图像相干斑的非局部平均滤波算法[J]. 西安交通大学学报, 2018, 52(4): 98–104. doi: 10.7652/xjtuxb201804014

    ZHU Lei, CAI Feifei, WANG Yannian, et al. A non-local means filtering algorithm for despeckling of SAR images[J]. Journal of Xian Jiaotong University, 2018, 52(4): 98–104. doi: 10.7652/xjtuxb201804014
    [21] FROST V S, STILES J A, SHANMUGAN K S, et al. A model for radar images and its application to adaptive digital filtering of multiplicative noise[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1982, PAMI-4(2): 157–165. doi: 10.1109/TPAMI.1982.4767223
    [22] TOUZI R, LOPES A, and BOUSQUET P. A statistical and geometrical edge detector for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(6): 764–773. doi: 10.1109/36.7708
    [23] 朱磊, 水鹏朗, 章为川, 等. 利用区域划分的合成孔径雷达图像相干斑抑制算法[J]. 西安交通大学学报, 2012, 46(10): 83–88, 100.

    ZHU Lei, SHUI Penglang, ZHANG Weichuan, et al. A despeckling algorithm for synthetic aperture radar images using region subdivision[J]. Journal of Xian Jiaotong University, 2012, 46(10): 83–88, 100.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  753
  • HTML全文浏览量:  442
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-11
  • 修回日期:  2020-09-09
  • 网络出版日期:  2020-09-15
  • 刊出日期:  2021-05-18

目录

    /

    返回文章
    返回