1997, 19(1): 137-140.
刊出日期:1997-01-19
本文给出了一种高精度的稳定的色散边界条件(DBC),可应用于传输线的时域有限差分法(FDTD)的分析之中。我们用一个新的二阶差分式代替了边界条件中的微分算子。与P。Y。Zhao等人(1994)提出的色散边界条件相比,本文中的边界条件具有相同的绝对稳定特性,但具有更好的吸收性能。
2022, 44(10): 3343-3352.
doi: 10.11999/JEIT220380
刊出日期:2022-10-19
基于深度卷积神经网络的图像超分辨率重建算法通常假设低分辨率图像的降质是固定且已知的,如双3次下采样等,因此难以处理降质(如模糊核及噪声水平)未知的图像。针对此问题,该文提出联合估计模糊核、噪声水平和高分辨率图像,设计了一种基于迭代交替优化的图像盲超分辨率重建网络。在所提网络中,图像重建器以估计的模糊核和噪声水平作为先验信息,由低分辨率图像重建出高分辨率图像;同时,综合低分辨率图像和估计的高分辨率图像,模糊核及噪声水平估计器分别实现模糊核和噪声水平的估计。进一步地,该文提出对模糊核/噪声水平估计器及图像重建器进行迭代交替的端对端优化,以提高它们的兼容性并使其相互促进。实验结果表明,与IKC, DASR, MANet, DAN等现有算法相比,提出方法在常用公开测试集(Set5, Set14, B100, Urban100)及真实场景图像上都取得了更优的性能,能够更好地对降质未知的图像进行重建;同时,提出方法在参数量或处理效率上也有一定的优势。