2000, 22(1): 68-72.
刊出日期:2000-01-19
本文给出一种de Bruijn序列的升元算法。该算法每步运算可生成一列元素而不是一个元素,因而减少了运算次数,加快了生成速度。
1995, 17(6): 618-622.
刊出日期:1995-11-19
De Bruijn序列是一类最重要的非线性移位寄存器序列。本文通过并置所有循环圈的周期约化,提出了一个新的生成k元de Bruijn序列的算法。该算法每步运算可生成一列元素而不是一个元素,因此减少了运算次数,加快了生成速度。
1993, 15(2): 204-207.
刊出日期:1993-03-19
De Bruijn序列是一类最重要的非线性移位寄存器序列。本文定义并研究了n级De Bruijn序列的k次齐次复杂度Ck(s),给出了Ck(s)的一个上界。k=1及k=2时,Ck(s)分别为人们所熟知的线性复杂度及二次齐次复杂度。
2015, 37(2): 423-428.
doi: 10.11999/JEIT140421
刊出日期:2015-02-19
用户撤销是基于身份的加密(IBE)方案在实际应用中所必须解决的问题。Chen等人在ACISP 2012上给出了第1个格上可撤销的基于身份的加密(RIBE)方案,但其只能达到选择性安全。利用Agrawal等人在欧密2010上给出的IBE方案,该文构造出一个格上适应性安全的RIBE方案,从而解决了Chen等人提出的公开问题;进一步指出利用Singh等人在SPACE 2012上给出的块方法,可以有效地缩短该方案的公钥尺寸。
1996, 18(6): 601-606.
刊出日期:1996-11-19
关键词:
神经网络; 模式识别; 学习算法
Broomhead(1988),Chen(1991)等人提出的RBF网络的学习算法都是基于传统的LMS算法,因此具有一定的局限性。本文提出了一种新的RBF网络的学习算法ABS投影学习算法,它是一种直接的学习算法。计算机模拟的结果表明,它具有学习效率高,识别率高和适用范围广的优点。
2005, 27(2): 235-238.
刊出日期:2005-02-19
关键词:
群签名; 伪造攻击; 不关联性
群签名允许群成员以匿名的方式代表整个群体对消息进行签名。而且,一旦发生争议,群管理员可以识别出签名者。该文对Posescu(2000)群签名方案和Wang-Fu(2003)群签名方案进行了安全性分析,分别给出一种通用伪造攻击方法,使得任何人可以对任意消息产生有效群签名,而群权威无法追踪到签名伪造者。因此这两个方案都是不安全的。
2025, 47(11): 4482-4492.
doi: 10.11999/JEIT250624
刊出日期:2025-11-10
由于粗粒度可重构密码逻辑阵列(CGRCA)的设计空间规模巨大,导致设计评估耗时长,手工探索优化解的质量不高且搜索效率较低。为此,该文面向CGRCA架构的高维空间、多目标优化特性,提出了基于贝叶斯优化的多目标设计空间探索方法,在平衡吞吐量、面积和FU利用率的同时提升解的质量。首先,该方法利用知识感知的无监督学习采样策略获得初始样本,确保初始样本的代表性与多样性。其次,建立快速评估模型对样本进行量化评估,缩短评估性能的时长。再者,设计自适应的多采集函数并建立基于贪心的混合代理模型,提出多目标贝叶斯优化方法来搜索最优的CGRCA架构,提升搜索效率和通用性。实验结果表明,该文提出的设计空间探索方法较其他设计空间探索方法,与参考集的平均距离(ADRS)至多降低34.9%,超体积提升28.7%,吞吐量提升29.9%,面积减少6.0%,FU利用率提升11.6%,并且展现出优异的跨算法稳定性。
1985, 7(2): 81-91.
刊出日期:1985-03-19
本文提出并证明了有源网络不定导纳矩阵的一般k阶余因式的两个拓扑表达式(A)和(B)。表达式(A)是W.K.Chen于1965年给出的一、二、三阶和特殊k阶余因式的拓扑表达式的统一和推广。表达式(B)表明,存在另一个有源网络拓扑分析方法正根有向k-树法。
2009, 31(7): 1732-1735.
doi: 10.3724/SP.J.1146.2008.00928
刊出日期:2009-07-19
关键词:
环签名;密码分析;可转换性
通过对Zhang-Liu-He (2006),Gan-Chen (2004)和Wang-Zhang-Ma (2007)提出的可转换环签名方案进行分析,指出了这几个可转换环签名方案存在可转换性攻击或不可否认性攻击,即,环中的任何成员都能宣称自己是实际签名者或冒充别的成员进行环签名。为防范这两种攻击,对这几个可转换环签名方案进行了改进,改进后的方案满足可转换环签名的安全性要求。
2011, 33(7): 1639-1643.
doi: 10.3724/SP.J.1146.2010.01212
刊出日期:2011-07-19
针对粒子滤波(Particle Filter, PF)存在的粒子退化和贫化问题,该文提出一种基于差分演化(Differential Evolution, DE)的PF算法。首先,为了充分利用最新的观测信息,采用无迹卡尔曼滤波(Unscented Kalman Filter, UKF)来产生重要性分布,对重要性分布产生的采样粒子不再做传统重采样操作,而是直接把采样粒子当作DE中的种群样本,粒子权重作为样本的适应函数,对粒子做差分变异、交叉、选择等迭代优化,最后得到最优的粒子点集。试验结果表明,该算法有效缓解了传统PF算法中的粒子退化和贫化,提高了粒子的利用率,具有较好的估计精度。
- 首页
- 上一页
- 1
- 2
- 3
- 下一页
- 末页
- 共:3页