有源网络不定导纳矩阵的一般k阶余因式的拓扑表达式
TOPOLOGICAL EXPRESSIONS FOR GENERAL k-ORDER COFACTOR OF INDEFINITE-ADMITTANCE MATRIX OF ACTIVE NETWORKS
-
摘要: 本文提出并证明了有源网络不定导纳矩阵的一般k阶余因式的两个拓扑表达式(A)和(B)。表达式(A)是W.K.Chen于1965年给出的一、二、三阶和特殊k阶余因式的拓扑表达式的统一和推广。表达式(B)表明,存在另一个有源网络拓扑分析方法正根有向k-树法。
-
关键词:
Abstract: Two topological expressions (A) and (B) and their proofs for general k-order cofaetor of the indefinite-admittance matrix of an aetive networks are presented. The expression (A) is the unification and extension of Chen s topological expressions (1965, 1976) for 1, 2, 3-order and special k-order cofactors. The expression (B) shows thatthere is another topological analysis method for active networkspositive root di-rected k-tree method. -
W. K. Chen, IEEE Trans. on CT, CT-12 (1965), 85.[2]W. K. Chen, Applied Graph Theory, Amsterdam: North-Holland, Chap. 4, 1976.[3]陈树柏,左恺,张良震等编,网络图论及其应用,科学出版社,1982.[4]A. Talbot, IEEE Trans. on CT, CT-13 (1966), 111.[5]W. K.Chen, IEEE Trans. on CT, CT-13 (1966), 438.[6]А.Г.Курощ著,柯召译,高等代数教程,第二章,高等教育出版社,1956.[7]Ф.Р.Гантмахер著,柯召译,矩阵论,高等教育出版社,1955.[8]黄汝激,北京钢铁学院学报,1982年,第2期,第83页.
计量
- 文章访问数: 1916
- HTML全文浏览量: 151
- PDF下载量: 409
- 被引次数: 0