Multitarget Localization Based on Sparse Representation for Bistatic MIMO Radar in the Presence of Impulsive Noise
-
摘要: 该文研究了对称稳定分布(SS)冲击噪声下双基地MIMO雷达的多目标定位问题。针对SS噪声下因二阶矩不存在而造成子空间类算法估计性能下降的不足,提出了矩阵行2范数最大的预处理方法对接收数据进行归一化,使得归一化后的协方差矩阵有界,并以拉直后的协方差矩阵构造稀疏线性模型,提出了基于协方差矩阵-近似零范数(Covariance Matrix Smoothed L0 norm, CMSL0)算法进行目标的发射角和接收角估计。仿真实验表明:通过矩阵行2范数最大化预处理之后,MUSIC(Multiple Signal Classification)和CMSL0算法均能有效地估计出目标的角度,并且CMSL0算法的估计精度及对冲击噪声的稳健性均优于MUSIC算法。此外,与MUSIC算法相比,CMSL0算法不要预先估计目标源的数目,且收发阵元不受半波长间隔的限制。Abstract: This paper is concerned with the multitarget localization for bistatic MIMO radar in the presence of Symmetric-Stable (SS) impulsive noise. As the non-existence of the second-order matrix degrades the estimation performance of the subspace-based algorithm in SS impulsive noise environment, the preprocessing method is proposed to normalize the received data by maximizing the 2-norm of the row of data. The theoretical analysis proves that the covariance matrix of normalized data is finite. Then the sparse linear model is constructed by performing the vectorization operation on the covariance matrix. And the Covariance Matrix Smoothed L0 norm (CMSL0) method is proposed to estimate the angle of the target. Finally, the Fractional Lower Order Moments (FLOM)-maximum likelihood method is utilized to obtain the location of the target. The simulation results show that both the MUSIC and CMSL0 algorithms can estimate the angle of target effectively after maximizing the 2-norm of the row of received data. The CMSL0 algorithm can obtain better estimation performance and has better robustness against the impulsive noise than the MUSIC algorithm. In addition, compared with the MUSIC algorithm, the CMSL0 algorithm does not require to estimate the actual number of the targets and is not restricted to be within a half wavelength interelement spacing.
-
Key words:
- Bistatic MIMO radar /
- Localization /
- Impulsive noise /
- 2-norm of the row of matrix /
- Smoothed L0 norm
期刊类型引用(8)
1. 毛毅,段永胜,黄中瑞,张峻宁. 一种在脉冲噪声环境下的最大相关熵目标直接定位算法. 系统工程与电子技术. 2023(09): 2651-2658 . 百度学术
2. 何孔飞,熊鹏文,童小宝. 一种基于联合组核稀疏编码的多模态材料感知与识别方法. 中国测试. 2020(12): 129-134 . 百度学术
3. 赵智昊,陈松,顾帅楠. 基于改进RPCA的双基地MIMO雷达参数估计方法. 信息工程大学学报. 2018(02): 166-172 . 百度学术
4. 赵智昊,吕品品,秦文利. 基于QR-RPCA的双基地MIMO雷达参数估计方法. 太赫兹科学与电子信息学报. 2018(02): 259-265 . 百度学术
5. 陈显舟,杨旭,陈周,白琳,方海. 双基地多输入多输出雷达收发四维角联合估计. 兵工学报. 2017(05): 917-923 . 百度学术
6. 黄中瑞,单凉,陈明建,张剑云. 一种新的MIMO雷达发射波形设计方法. 电子与信息学报. 2016(05): 1026-1033 . 本站查看
7. 李丽,邱天爽. 冲激噪声环境下基于最大相关熵准则的双基地MIMO雷达目标参数联合估计算法. 电子与信息学报. 2016(12): 3189-3196 . 本站查看
8. 李永潮,刁鸣. 单基地MIMO雷达的非圆信号DOA估计. 应用科技. 2016(01): 5-8 . 百度学术
其他类型引用(6)
-
计量
- 文章访问数: 1787
- HTML全文浏览量: 129
- PDF下载量: 642
- 被引次数: 14