高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Tetrolet Packet变换的SAR图像稀疏表示

陈原 张荣 尹东

陈原, 张荣, 尹东. 基于Tetrolet Packet变换的SAR图像稀疏表示[J]. 电子与信息学报, 2012, 34(2): 261-267. doi: 10.3724/SP.J.1146.2011.00584
引用本文: 陈原, 张荣, 尹东. 基于Tetrolet Packet变换的SAR图像稀疏表示[J]. 电子与信息学报, 2012, 34(2): 261-267. doi: 10.3724/SP.J.1146.2011.00584
Chen Yuan, Zhang Rong, Yin Dong. SAR Image Sparse Representation Based on Tetrolet Packet Transform[J]. Journal of Electronics & Information Technology, 2012, 34(2): 261-267. doi: 10.3724/SP.J.1146.2011.00584
Citation: Chen Yuan, Zhang Rong, Yin Dong. SAR Image Sparse Representation Based on Tetrolet Packet Transform[J]. Journal of Electronics & Information Technology, 2012, 34(2): 261-267. doi: 10.3724/SP.J.1146.2011.00584

基于Tetrolet Packet变换的SAR图像稀疏表示

doi: 10.3724/SP.J.1146.2011.00584
基金项目: 

国家973计划项目(2010CB731904)资助课题

SAR Image Sparse Representation Based on Tetrolet Packet Transform

  • 摘要: Tetrolet变换作为多尺度几何分析的一种,能够对平滑的自然图像进行有效的稀疏表示。SAR图像具有丰富的细节纹理信息,因此经过Tetrolet变换后的高频系数依然具有较大的幅值,从而严重影响了稀疏表示SAR图像的性能。该文针对此问题提出了一种新的变换方法Tetrolet Packet,该算法将高频子带系数进行重新排序后,使用熵作为代价函数对不同的高频子带进行不同层次的Tetrolet分解得到Tetrolet最优分解树,从而使系数能量更加集中同时尽量减少方向信息,以便于后续SAR图像压缩。实验比较了Tetrolet和Tetrolet Packet两种算法,用相同个数的变换系数来进行图像重建,无论是主观视觉质量还是客观参数PSNR评价,Tetrolet Packet稀疏表示SAR图像的性能都优于Tetrolet。最后针对两种算法的变换系数均具有类似零树结构的特性,提出分别使用SPIHT和Modified-SPIHT算法对Tetrolet和Tetrolet Packet变换系数进行编码,并探讨了该两种算法对SAR图像的压缩性能。
  • Candes E J and Donoho D L. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities[J]. Communications on Pure and Applied Mathematics, 2004, 57(2): 219-266.[2] Do M N and Vetterli M. The contourlet transform: an efficient directional multiresolution image representation[J]. IEEE Transactions on Image Processing, 2005, 14(12): 2091-2106.[3] Huo C, Zhang R, and Yin D. An adaptive sparse representation for remote sensing image based on combination of wavelet and adaptive directional filter[C]. Acoustics Speech and Signal Processing (ICASSP), Dallas, 2010: 990-993.[4] Velisavljevic V, Beferull-Lozano B, Vetterli M, et al.. Directionlets: anisotropic multidirectional representation with separable filtering[J]. IEEE Transactions on Image Processing, 2006, 15(7): 1916-1933.[5] Donoho D L. Wedgelets: nearly minimax estimation of edges[J]. The Annals of Statistics, 1999, 27(3): 859-897.[6] Le Pennec E and Mallat S. Sparse geometric image representations with bandelets[J]. IEEE Transactions on Image Processing, 2005, 14(4): 423-438.[7] Mallat S. Geometrical grouplets[J]. Applied and Computational Harmonic Analysis, 2009, 26(2): 161-180.[8] Plonka G. The easy path wavelet transform: a new adaptive wavelet transform for sparse representation of two- dimensional data[J]. Multiscale Modeling and Simulation, 2009, 7(3): 1474-1496.[9] Plonka G, Tenorth S, and Rosca D. A new hybrid method for image approximation using the easy path wavelet transform[J]. IEEE Transactions on Image Processing, 2011, 20(2): 372-381.[10] Thiagarajan J J, Ramamurthy K N, and Spanias A. Multilevel dictionary learning for sparse representation of images[C]. Digital Signal Processing Workshop and IEEE Signal Processing Education Workshop, Sedona, AZ, 2011: 271-276.[11] Liu Z, Zhen X, and Ma C. Image sparse decomposition based on concatenated dictionary[C]. Intelligent Computation Technology and Automation (ICICTA), Shenzhen, China, 2011: 147-150.[12] Krommweh J. Tetrolet transform: a new adaptive Haar wavelet algorithm for sparse image representation[J]. Journal of Visual Communication and Image Representation, 2010, 21(4): 364-374.[13] Golomb S W. Polyominoes[M]. Nebraska, USA, Scribner, 1965: 70-85.[14] Coifman R R and Wickerhauser M V. Entropy-based algorithms for best basis selection[J]. IEEE Transactions on Information Theory, 1992, 38(2): 713-718.[15] Xu J, Pi Y, and Ming R. SAR image compression based on sparse representation[C]. Radar Symposium (IRS), Vilnius, Lithuania, 2010: 1-4.[16] Said A and Pearlman W A. A new, fast, and efficient image codec based on set partitioning in hierarchical trees[J]. IEEE Transactions on Circuits and Systems for Video Technology , 1996, 6(3): 243-250.[17] Sprljan N, Grgic S, and Grgic M. Modified SPIHT algorithm for wavelet packet image coding[J]. Real-Time Imaging, 2005, 11(5,6): 378-388.
  • 加载中
计量
  • 文章访问数:  3354
  • HTML全文浏览量:  70
  • PDF下载量:  1227
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-14
  • 修回日期:  2011-09-28
  • 刊出日期:  2012-02-19

目录

    /

    返回文章
    返回