高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种非等间距线阵的DOA估计方法

邵华 苏卫民 顾红

邵华, 苏卫民, 顾红. 一种非等间距线阵的DOA估计方法[J]. 电子与信息学报, 2011, 33(1): 95-99. doi: 10.3724/SP.J.1146.2010.00337
引用本文: 邵华, 苏卫民, 顾红. 一种非等间距线阵的DOA估计方法[J]. 电子与信息学报, 2011, 33(1): 95-99. doi: 10.3724/SP.J.1146.2010.00337
Shao Hua, Su Wei-Min, Gu Hong. A Method of Estimation DOA for Non-uniform Linear Array[J]. Journal of Electronics & Information Technology, 2011, 33(1): 95-99. doi: 10.3724/SP.J.1146.2010.00337
Citation: Shao Hua, Su Wei-Min, Gu Hong. A Method of Estimation DOA for Non-uniform Linear Array[J]. Journal of Electronics & Information Technology, 2011, 33(1): 95-99. doi: 10.3724/SP.J.1146.2010.00337

一种非等间距线阵的DOA估计方法

doi: 10.3724/SP.J.1146.2010.00337

A Method of Estimation DOA for Non-uniform Linear Array

  • 摘要: 针对非等间距线阵测向中的测向精度和相位模糊之间的矛盾,该文提出了一种基于四阶累积量的波达角(DOA)估计算法。该算法利用基线间的参差关系解相位模糊,以突破VESPA算法中参考阵元间距不大于半波长的限制,从而有效地提高了测向精度。依靠导向矢量、累积量矩阵特征值以及其对应的特征向量三者之间的关系,该算法实现了各基线的相位差与信号源的配对。仿真实验验证了该算法的有效性。
  • Schmidt R O. Multiple emitter location and signal parameter estimation[J].IEEE Transactions on Antennas and Propagation.1986, 34(3):276-280[2]Liu Tsung-hsien and Mendel J M. Azimuth and elevation direction finding using arbitrary array geometries[J].IEEE Transactions on Signal Processing.1998, 46(7):2061-2065[3]Dogan M C and Mendel J M. Applications of cumulants to array processing-Part I: aperture extension and array calibration[J].IEEE Transactions on Signal Processing.1995, 43(5):1200-1216[4]龚享铱, 袁俊泉, 等.基于相位干涉仪数组多组解模糊的波达角估计算法研究[J].电子与信息学报.2006, 28(1):55-59浏览Gong X Y and Yuan J Q, et al.. A multi-pare unwrap ambiguity of interferometer array for estimation of direction of arrival[J].Journal of Electronics Information Technology.2006,28(1):55-59[5]周亚强, 皇甫堪. 噪扰条件下数字式多基线相位干涉仪解模糊问题. 通信学报, 2005, 26(8): 16-21.[6]Zhou Y Q and Huangfu K. Solving ambiguity problem[7]of digitized multi-baseline interferometer under noisycircumstance. Journal on Communications, 2005, 26(8): 16-21.[8]Gazzah H and Abed-Meraim K. Optimum ambiguity-free directional and omnidirectional planar antenna arrays for DOA estimation[J].IEEE Transactions on Signal Processing.2009, 57(10):3942-3953[9]李旭, 蒋德富. MUSIC算法在交叉干涉仪测向中的应用[J]. 现代雷达, 2009, 31(10): 55-59.Li Xu and Jiang De-fu. Application of MUSIC algorithm to cross interferometer direction finding[J]. Modern Radar, 2009, 31(10): 55-59.[10]司伟建, 初萍, 孙圣和. 超宽频带测向解模糊方法研究[J].弹箭与制导学报, 2009, 29(2): 45-48.Si Wei-jian, Chu Ping, and Sun Sheng-he. Study on the methods of solving direction finding ambiguity in very wide band[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(2): 45-48.[11]Willett P K. Modulo conversion method for estimating the direction of arrival [J].IEEE Transactions on Aerospace and Electronic Systems.2000, 36(4):1391-1396[12]王永良, 陈辉. 空间谱估计理论与算法[M]. 北京: 清华大学出版社, 2004: 390-411.[13]Wang Yong-liang and Chen Hui. Spatial Spectrum Estimation Theory and Algorithms[M]. Beijing: TsingHua University Press, 2004: 390-411.[14]Liang Jun-li. Joint azimuth and elevation direction finding using cumulant[J].IEEE Sensors Journal.2009, 9(4):390-398
  • 加载中
计量
  • 文章访问数:  3825
  • HTML全文浏览量:  126
  • PDF下载量:  1268
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-04-01
  • 修回日期:  2010-07-09
  • 刊出日期:  2011-01-19

目录

    /

    返回文章
    返回