高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对称稳定分布的相关熵及其在时间延迟估计上的应用

宋爱民 邱天爽 佟祉谏

宋爱民, 邱天爽, 佟祉谏. 对称稳定分布的相关熵及其在时间延迟估计上的应用[J]. 电子与信息学报, 2011, 33(2): 494-498. doi: 10.3724/SP.J.1146.2010.00309
引用本文: 宋爱民, 邱天爽, 佟祉谏. 对称稳定分布的相关熵及其在时间延迟估计上的应用[J]. 电子与信息学报, 2011, 33(2): 494-498. doi: 10.3724/SP.J.1146.2010.00309
Song Ai-Min, Qiu Tian-Shuang, Tong Zhi-Jian. Correntropy of the Symmetric Stable Distribution and Its Application to the Time Delay Estimation[J]. Journal of Electronics & Information Technology, 2011, 33(2): 494-498. doi: 10.3724/SP.J.1146.2010.00309
Citation: Song Ai-Min, Qiu Tian-Shuang, Tong Zhi-Jian. Correntropy of the Symmetric Stable Distribution and Its Application to the Time Delay Estimation[J]. Journal of Electronics & Information Technology, 2011, 33(2): 494-498. doi: 10.3724/SP.J.1146.2010.00309

对称稳定分布的相关熵及其在时间延迟估计上的应用

doi: 10.3724/SP.J.1146.2010.00309
基金项目: 

国家自然科学基金(60872122,60940023)资助课题

Correntropy of the Symmetric Stable Distribution and Its Application to the Time Delay Estimation

  • 摘要: 相关熵是一个表示随机变量局部相似性的统计量。该文首先研究对称-稳定SS分布的相关熵的参数表示,利用该参数表示证明了对于位置参数为零的分布SS,最大相关熵准则与最小分散系数准则是等价的。最后将研究结果应用于稳定分布噪声环境下自适应时间延迟估计。仿真实验表明,该文算法性能优于最小均方误差时间延迟估计与最小平均P-范数时间延迟估计。
  • [1] Nikias C L and Shao M. Signal Processing with Alpha-Stable Distributions and Applications. New York: Wiley, 1995: 98-128. [2] Liao Ming-sheng, Wang Chang-cheng, and Wang Yong, et al.. Using SAR images to detect ships from sea clutter[J].Geoscience and Remote Sensing Letters.2008, 5(2):194-198 [3] Georgiou P G, Tsakalides P, and Kyriakakis C. Alpha-stable modeling of noise and robust time-delay estimation in the presence of impulsive noise[J].IEEE Transactions on Multimedia.1999, 1(3):291-301 [4] Rupi M, Tsakalides P, and Del Re E, et al.. Constant modulus blind equalization based on fractional lower-order statistics[J].Signal Processing.2004, 84(5):881-894 [5] Tang Xiao-tong, Ma Meng, and Ostry D I, et al.. Characterizing impulsive network traffic using truncated -stable processes[J].IEEE Communications Letters.2009, 13(12):980-982 [6] Samorodnitsky G and Taqqu M S. Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. New York.[J].London: Chapman Hall.1994,:- [7] Stuck B W. Minimum error dispersion linear filtering of scalar symmetric stable processes[J].IEEE Transactions on Automatic Control.1978, 23(3):507-509 [8] Ma X Y and Nikias C L. Joint estimation of time delay and frequency delay in impulsive noise using fractional lower order statistics[J].IEEE Transactions on Signal Processing.1996, 44(11):2669-2687 [9] Li S, Qiu T S, and Zhang S F. Space-time blind equalisation in impulsive noise[J].IET Signal Processing.2009, 3(6):445-458 [10] Zha D. Robust multiuser detection method based on least p-norm state space criterion[J].Wireless Personal Communications.2007, 40(2):191-204 [11] Santamaria I, Pokharel P P, and Principe J C. Generalized correlation function: definition, properties, and application to blind equalization[J].IEEE Transactions on Signal Processing.2006, 54(6):2187-2197 [12] Liu W F, Pokharel P P, and Principe J C. Correntropy: properties and applications in non-Gaussian signal processing[J].IEEE Transactions on Signal Processing.2007, 55(11):5286-5298 [13] Bessa R J, Miranda V, and Gama J. Entropy and correntropy against minimum square error in offline and online three-day ahead wind power forecasting[J].IEEE Transactions on Power Systems.2009, 24(4):1657-1666 [14] Jeong K H, Liu W F, and Han S, et al.. The correntropy MACE filter[J].Pattern Recognit.2009, 42(5):871-885 [15] Singh A and Principe J C. Using correntropy as a cost function in linear adaptive filters. Proceedings of the 2009 international joint conference on Neural Networks, Atlanta, USA, Jun.14-19, 2009: 2950-2955. [16] Gunduz A and Principe J C. Correntropy as a novel measure for nonlinearity tests[J].Signal Processing.2009, 89(1):14-23 [17] Pokharel P P, Liu W F, and Principe J C. A low complexity robust detector in impulsive noise[J].Signal Processing.2009, 89(10):1902-1909 [18] Youn D H, Ahmed N, and Carter G C. On using the LMS algorithm for time delay estimation[J].IEEE Transactions on Acoustics, Speech and Signal Process.1982, 30(5):798-801
  • 加载中
计量
  • 文章访问数:  3896
  • HTML全文浏览量:  98
  • PDF下载量:  1907
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-03-29
  • 修回日期:  2010-10-15
  • 刊出日期:  2011-02-19

目录

    /

    返回文章
    返回