冯道旺. 利用径向加速度信息的单站无源定位技术研究[D]. [博士论文], 长沙, 国防科技学技术大学, 2003.[2]冯道旺, 周一宇, 李宗华. 相参脉冲序列多普勒变化率的一种快速高精度测量方法[J].信号处理.2004, 20(1):40-43[3]Feng Dao-wang, Zhou Yi-yu, and Li Zhong-hua. A fast and accurate estimator for Doppler rate-of-change with the coherent pulse train[J]. Signal Processing, 2004, 20(1): 40-43.[4]郁春来, 吕韶昱, 万方等. 基于小波变换的多普勒频率变化率高精度估计方法[J].电子学报.2007, 35(9):1656-1659[5]Yu Chun-lai, L Shao-yu, and Wan Fang, et al.. An accurate estimation algorithm for doppler frequency rate-of-change based on wavelet transform[J]. Acta Electronica Sinica, 2007, 35(9): 1656-1659.[6]郁春来, 万建伟, 占荣辉. 一种PCM相参脉冲序列多普勒频率变化率估计算法[J].电子与信息学报.2008, 30(10):2303-2306浏览[7]Yu Chun-lai, Wan Jian-wei, and Zhan Rong-hui. An estimation algorithm for Doppler frequency rate-of-change with PCM coherent pulse train[J].Journal of Electronics Information Technology.2008, 30(10):2303-2306[8]郁春来, 万方, 占荣辉等. 一种关于LFM 相参脉冲信号多普勒频率变化率的估计算法[J]. 信号处理, 2008, 24(4): 546-550.Yu Chun-lai, Wan Fang, and Zhan Rong-hui, et al.. An estimation algorithm for Doppler frequency rate-of-change with LFM coherent pulse signal. Signal Processing, 2008, 24(4): 546-550.[9]Wang M S, Chan A K, and Chui C K. Linear frequency-modulated signal detection using Radon-ambiguity transform[J].IEEE Transactions on Signal Processing.1998, 46(3):571-586[10]陶然, 邓兵, 王越. 分数阶Fourier变换在信号处理领域的研究进展[J]. 中国科学E辑, 2006, 36(2): 113-136.[11]Tao Ran, Deng Bing, and Wang Yue. Research progress of the fractional Fourier transform in signal processing[J].Science in China Series F: Information Sciences.2006, 49(1):1-25[12]陶然, 张峰, 王越. 分数阶Fourier变换离散化的研究进展[J].中国科学E辑, 2008, 38(4): 481-503.[13]Tao Ran, Deng Bing, and Wang Yue. Research progress on discretization of fractional Fourier transform [J]. Science in China Series F: Information Sciences. 2008, 51(7): 859-880.[14]齐林, 陶然, 周思永等. 基于分数阶Fourier变换的多分量LFM信号的检测和参数估计[J]. 中国科学E辑, 2003, 33(8): 754-759.[15]Qi Lin, Tao Ran, and Zhou Si-yong, et al.. Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform[J].Science in China Series F: Information Sciences.2004, 47(2):184-198[16]胥嘉佳, 刘渝, 邓振淼. LFM信号参数估计的牛顿迭代方法初始值研究[J]. 电子学报, 2009, 37(3): 598-602.Xu Jia-jia, Liu Yu, and Deng Zhen-miao. The starting point problem of parameters estimation for LFM signal based on Newtons method[J]. Acta Electronica Sinica, 2009, 37(3):598-602.[17]Tretter S A. Estimating the frequency of a noisy sinusoid by linear regression[J]. IEEE Transactions on Information Theory, 1985, IT-31(6): 832-835.[18]Hndel P and Tichavsk P. Frequency rate estimation at high SNR[J].IEEE Transactions on Signal Processing.1997, 45(8):2101-2105[19]Ristic B and Boashash B. Comments on The Cramer-Rao lower bounds for signals with constant amplitude and polynomial phase[J].IEEE Transactions on Signal Processing.1998, 46(6):1708-1709[20]刘建成, 刘忠, 王雪松等. 高斯白噪声背景下的LFM信号的分数阶Fourier域信噪比分析[J].电子与信息学报.2007, 29(10):2337-2340浏览[21]Liu Jian-cheng, Liu Zhong, and Wang Xue-song, et al.. SNR analysis of LFM signal with gaussian white noise in fractional fourier transform domain[J].Journal of Electronics Information Technology.2007, 29(10):2337-2340[22]刘建成, 王雪松, 刘忠等. 基于分数阶Fourier变换的LFM信号参数估计精度分析[J].信号处理.2008, 24(2):197-200[23]Liu Jian-cheng, Wang Xue-song, and Liu Zhong, et al. Parameters resolution of LFM signal based on fractional fourier transform[J]. Signal Processing, 2008, 24(2): 197-200.
|