基于电磁矢量阵列孔径扩展方法的相干目标DOA估计
doi: 10.3724/SP.J.1146.2009.01377
Extended Aperture-based DOA Estimation of Coherent Sources Using a Electromagnetic Vector-sensor Array
-
摘要: 该文采用均匀且稀疏分布的电磁矢量矩形阵列,针对相干目标提出了一种有效的2维波达角(DOA)估计算法,该算法通过增加相邻阵元的间隔来扩展阵列的有效孔径,从而提高算法的DOA估计性能。论文首先结合极化平滑算法和传播算子方法得到存在相位周期性模糊的方向余弦估计。为了解决模糊性问题,论文通过协方差矩阵平滑提出一种新的解相干预处理算法,由该算法得到的信号子空间包含矢量阵元的导向矢量,且不存在相位模糊,利用此特点实现去模糊处理,得到目标的DOA估计。仿真结果表明,与基于ESPRIT的孔径扩展算法相比,提出的算法能够实现相干目标的DOA估计,同时无需特征值或奇异值分解,有更低的运算量。Abstract: An efficient algorithm for multiple coherent sources two-dimensional Direction Of Arrival (DOA) estimation with a sparse uniform rectangular array of electromagnetic vector sensor (EmVS) is proposed. The algorithm can improve the DOA estimation performance by increasing the intervector sensor spacing to achieve aperture extension. The Polarization Smoothing Algorithm (PSA) is coupled with the propagator method (PM) to acquire cyclically ambiguous DOA estimates. In order to disambiguate the cyclic phase ambiguities, a novel pre-processing method is derived by Covariance Matrix Averaging (CMA) and identify the true DOA estimates from a set of cyclically ambiguous candidate estimates based on the vector sensor steering vectors characteristics. Comparing with the existing extended aperture-based direction finding method, the proposed algorithm can estimate the DOA of coherent sources, and requires no eigen-decomposition, hence, has a lower computational complexity. Monte-Carlo simulations are presented to verify the effectiveness of the proposed algorithm.
-
Tabrikian J, shavit R, and Rahamim D. An efficient vector sensor configuration for source localization[J].IEEE Signal Processing Letters.2004, 11(8):690-693[2]Xiao Jin-Jun and Nehorai A. Optimal polarized beampattern synthesis using a vector antenna array [J].IEEE Transactions on Signal Processing.2009, 57(2):576-587[3]Gong Xiao-feng, Liu Zhi-wen, and Xu You-gen. Direction-of- arrival estimation via twofold mode-projection[J].Signal Processing.2009, 89(5):831-842[4]Xu You-gen, Liu Zhi-wen, Wong K T, and Cao Jin-Liang. Virtual-manifold ambiguity in HOS-based direction-finding with electromagnetic vector-sensors[J].IEEE Transactions on Aerospace and Electronic Systems.2008, 44(4):1291-1308[5]Mir H S and Sahr J D. Passive direction finding using airborne vector sensors in the presence of manifold perturbations[J].IEEE Transactions Signal Processing.2007, 55(1):156-164[6]Wong K T and Zoltowski M D. Closed-form direction finding and polarization estimation with arbitrarily spaced electromagnetic vector-sensors at unknown locations[J].IEEE Transactions on Antennas and Propagation.2000, 48(5):671-681[7]Zoltowski M D and Wong K T. Closed-form eigenstructure- based direction finding using arbitrary but identical subarrays on a sparse uniform rectangular array grid[J].IEEE Transactions on Signal Processing.2000, 48(8):2205-2210[8]Zoltowski M D and Wong K T. ESPRIT-based 2-D direction finding with a sparse uniform array of electromagnetic vector sensors[J].IEEE Transactions on Signal Processing.2000, 48(8):2195-2204[9]He Jin and Liu Zhong. Computationally efficient 2D direction finding and polarization estimation with arbitrarily spaced electromagnetic vector sensors at unknown locations using the propagator method [J]. Signal Processing, 2009, 19(3): 491-503.[10]He Jin and Liu Zhong. Efficient underwater two-dimensional coherent source localization with linear vector-hydrophone array[J].Signal Processing.2009, 89(9):1715-1722[11]Rahamim D, Tabrikian J, and Shavit R. Source localization using vector sensor array in a multipath environment[J].IEEE Transactions on Signal Processing.2004, 52(11):3096-3103[12]Wang Hong-yi and Liu K J R. 2-D spatial smoothing for multipath coherent signal separation [J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 2(34): 391-405.
计量
- 文章访问数: 3941
- HTML全文浏览量: 133
- PDF下载量: 1117
- 被引次数: 0