高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高阶LOD-FDTD方法的数值特性研究

刘国胜 张国基

刘国胜, 张国基. 高阶LOD-FDTD方法的数值特性研究[J]. 电子与信息学报, 2010, 32(6): 1384-1388. doi: 10.3724/SP.J.1146.2009.00881
引用本文: 刘国胜, 张国基. 高阶LOD-FDTD方法的数值特性研究[J]. 电子与信息学报, 2010, 32(6): 1384-1388. doi: 10.3724/SP.J.1146.2009.00881
Liu Guo-sheng, Zhang Guo-ji. Study for the Numerical Properties of the Higher-Order LOD-FDTD Methods[J]. Journal of Electronics & Information Technology, 2010, 32(6): 1384-1388. doi: 10.3724/SP.J.1146.2009.00881
Citation: Liu Guo-sheng, Zhang Guo-ji. Study for the Numerical Properties of the Higher-Order LOD-FDTD Methods[J]. Journal of Electronics & Information Technology, 2010, 32(6): 1384-1388. doi: 10.3724/SP.J.1146.2009.00881

高阶LOD-FDTD方法的数值特性研究

doi: 10.3724/SP.J.1146.2009.00881

Study for the Numerical Properties of the Higher-Order LOD-FDTD Methods

  • 摘要: 该文分析并证明了高阶局部1维时域有限差分(LOD-FDTD)方法的数值特性,即:稳定性、数值色散及高阶收敛性。文中首次推导出3维各阶LOD-FDTD方法的增长因子和数值色散关系的一致形式,解析证明了这类方法均是无条件稳定的。基于此一致性关系,首次分析了这类方法的数值色散误差随阶数的收敛情况,并给出收敛性条件。在用此类方法计算谐振腔本征模频率的实验中,数值结果显示高阶方法可达到更优的计算精度,同时不显著增加计算时间。
  • 葛德彪, 闫玉波. 电磁波时域有限差分方法. 第二版, 西安: 西安电子科技大学出版社, 2005: 8-31.[2]Ge D B and Yan Y B. Finite-Difference Time-Domain Method for Electromagnetic Waves. Second Edition, Xian: the Press of Xidian University, 2005: 8-31.[3]Sun G and Trueman C W. Unconditionally stable Crank- Nicolson scheme for solving the two-dimensional Maxwells equations [J].Electronics Letters.2003, 39(7):595-597[4]Namiki T. A new FDTD algorithm based on alternating- direction implicit method [J].IEEE Transactions on Microwave and Theory Techniques.1999, 47(10):2003-2007[5]Liu G S, Zhang G J, and Hu B J. Numerical analysis for an improved ADI-FDTD method [J].IEEE Microwave and Wireless Components Letters.2008, 18(9):569-571[6]Fu W and Tan E L. Stability and dispersion analysis for higher order 3-D ADI-FDTD method [J].IEEE Transactions on Antennas and Propagation.2005, 53(11):3691-3696[7]Shibayama J, Muraki M, and Yamauchi J, et al.. Efficient implicit FDTD algorithm based on locally one-dimensional scheme [J].Electronics Letters.2005, 41(19):1046-1047[8]Ahmed I, Chua E K, and Li E P, et al.. Development of the three-dimensional unconditionally stable LOD-FDTD method [J].IEEE Transactions on Antennas and Propagation.2008, 56(11):3596-3600[9]Li E, Ahmed I, and Vahldieck R. Numerical dispersion analysis with an improved LOD-FDTD method [J].IEEE Microwave and Wireless Components Letters.2007, 17(5):319-321[10]Jung K Y and Teixeira F L. An iterative unconditionally stable LOD-FDTD method [J].IEEE Microwave and Wireless Components Letters.2008, 18(2):76-78
  • 加载中
计量
  • 文章访问数:  3128
  • HTML全文浏览量:  78
  • PDF下载量:  898
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-06-16
  • 修回日期:  2010-01-11
  • 刊出日期:  2010-06-19

目录

    /

    返回文章
    返回