高阶LOD-FDTD方法的数值特性研究
doi: 10.3724/SP.J.1146.2009.00881
Study for the Numerical Properties of the Higher-Order LOD-FDTD Methods
-
摘要: 该文分析并证明了高阶局部1维时域有限差分(LOD-FDTD)方法的数值特性,即:稳定性、数值色散及高阶收敛性。文中首次推导出3维各阶LOD-FDTD方法的增长因子和数值色散关系的一致形式,解析证明了这类方法均是无条件稳定的。基于此一致性关系,首次分析了这类方法的数值色散误差随阶数的收敛情况,并给出收敛性条件。在用此类方法计算谐振腔本征模频率的实验中,数值结果显示高阶方法可达到更优的计算精度,同时不显著增加计算时间。Abstract: In this paper, the numerical properties of higher-order Locally One Dimensionally Finite-Difference Time-Domain (LOD-FDTD) are investigated, i.e. stability, numerical dispersion, and convergence. The universal formulas of the amplitude factor and the numerical dispersion relationship are derived for 3D varying-order LOD-FDTD, and their unconditional stability is analytically proved. Based on this universal formula, the numerical convergence of this class of methods is discussed, and the convergence condition is presented for the first time. Numerical results in calculating the resonant frequency show that, higher-order methods can achieve better performance while not dramatically increasing computational time.
-
葛德彪, 闫玉波. 电磁波时域有限差分方法. 第二版, 西安: 西安电子科技大学出版社, 2005: 8-31.[2]Ge D B and Yan Y B. Finite-Difference Time-Domain Method for Electromagnetic Waves. Second Edition, Xian: the Press of Xidian University, 2005: 8-31.[3]Sun G and Trueman C W. Unconditionally stable Crank- Nicolson scheme for solving the two-dimensional Maxwells equations [J].Electronics Letters.2003, 39(7):595-597[4]Namiki T. A new FDTD algorithm based on alternating- direction implicit method [J].IEEE Transactions on Microwave and Theory Techniques.1999, 47(10):2003-2007[5]Liu G S, Zhang G J, and Hu B J. Numerical analysis for an improved ADI-FDTD method [J].IEEE Microwave and Wireless Components Letters.2008, 18(9):569-571[6]Fu W and Tan E L. Stability and dispersion analysis for higher order 3-D ADI-FDTD method [J].IEEE Transactions on Antennas and Propagation.2005, 53(11):3691-3696[7]Shibayama J, Muraki M, and Yamauchi J, et al.. Efficient implicit FDTD algorithm based on locally one-dimensional scheme [J].Electronics Letters.2005, 41(19):1046-1047[8]Ahmed I, Chua E K, and Li E P, et al.. Development of the three-dimensional unconditionally stable LOD-FDTD method [J].IEEE Transactions on Antennas and Propagation.2008, 56(11):3596-3600[9]Li E, Ahmed I, and Vahldieck R. Numerical dispersion analysis with an improved LOD-FDTD method [J].IEEE Microwave and Wireless Components Letters.2007, 17(5):319-321[10]Jung K Y and Teixeira F L. An iterative unconditionally stable LOD-FDTD method [J].IEEE Microwave and Wireless Components Letters.2008, 18(2):76-78
计量
- 文章访问数: 3128
- HTML全文浏览量: 78
- PDF下载量: 898
- 被引次数: 0