高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Girth-8 (3,L)-规则QC-LDPC码的一种确定性构造方法

张国华 陈超 杨洋 王新梅

张国华, 陈超, 杨洋, 王新梅. Girth-8 (3,L)-规则QC-LDPC码的一种确定性构造方法[J]. 电子与信息学报, 2010, 32(5): 1152-1156. doi: 10.3724/SP.J.1146.2009.00838
引用本文: 张国华, 陈超, 杨洋, 王新梅. Girth-8 (3,L)-规则QC-LDPC码的一种确定性构造方法[J]. 电子与信息学报, 2010, 32(5): 1152-1156. doi: 10.3724/SP.J.1146.2009.00838
Zhang Guo-hua, Chen Chao, Yang Yang, Wang Xin-mei. Girth-8 (3,L)-Regular QC-LDPC Codes Based on Novel Deterministic Design Technique[J]. Journal of Electronics & Information Technology, 2010, 32(5): 1152-1156. doi: 10.3724/SP.J.1146.2009.00838
Citation: Zhang Guo-hua, Chen Chao, Yang Yang, Wang Xin-mei. Girth-8 (3,L)-Regular QC-LDPC Codes Based on Novel Deterministic Design Technique[J]. Journal of Electronics & Information Technology, 2010, 32(5): 1152-1156. doi: 10.3724/SP.J.1146.2009.00838

Girth-8 (3,L)-规则QC-LDPC码的一种确定性构造方法

doi: 10.3724/SP.J.1146.2009.00838

Girth-8 (3,L)-Regular QC-LDPC Codes Based on Novel Deterministic Design Technique

  • 摘要: 对于围长(girth)至少为8的低密度奇偶校验(LDPC)码,目前的绝大多数构造方法都需要借助于计算机搜索。受贪婪构造算法启发,该文利用完全确定的方式构造出一类围长为8的(3, L)- 规则QC-LDPC码。这类QC-LDPC码的校验矩阵由3L个PP的循环置换矩阵构成。对于任意整数P3L2/4,这类校验矩阵的围长均为8。
  • Zhang G H and Wang X M. Construction of low-density parity-check codes based on frequency-hopping sequences [J]. Chinese Journal of Electronics, 2009, 18(1): 141-144.[2]张国华, 王新梅. 利用双重扩展RS码及循环MDS码构造实用化的LDPC码[J]. 通信学报, 2008, 29(6): 100-105.Zhang G H and Wang X M. Applied quasi-cyclic LDPC codes from doubly-extended RS code and cyclic MDS code [J]. Journal on Communications, 2008, 29(6): 100-105.[3]Esmaeili M and Gholami M. Maximum-girth slope-based quasi-cyclic (2,k5) low-density parity-check codes [J].IET Communications.2008, 2(10):1251-1262[4]Zhang H and Moura J M F. Geometry based designs of LDPC codes [C]. Proceedings of the IEEE International Conference on Communications(ICC04), Paris, France, 2004: 762-766.[5]陶雄飞, 刘卫忠, 邹雪城. 利用几何图形构造不含小环的LDPC码[J]. 系统工程与电子技术, 2007, 29(11): 1965-1968.Tao X F, Liu W Z, and Zou X C. Construction of LDPC codes without small cycles based on geometry [J]. Systems Engineering and Electronics, 2007, 29(11): 1965-1968.[6]范俊, 肖扬, 李门浩 .一种围数为八的低密度校验码校验矩阵设计[J]. 北京交通大学学报, 2007, 31(2): 10-14.Fan J, Xiao Y, and Lee M H. Design of parity check matrices of LDPC codes with girth 8 [J]. Journal of Beijing Jiaotong University, 2007, 31(2): 10-14.[7]Wang Y, Yedidia J S, and Draper S C. Construction of high-girth QC-LDPC codes[C]. 5th International Symposium on Turbo Codes and Related Topics, Lausanne, Switzerland, 2008: 180-185.[8]Fossorier M P C. Quasi-cyclic low-density parity-check codes from circulant permutation matrices [J].IEEE Transactions on Information Theory.2004, 50(8):1788-1793[9]Lu J and Moura J M F. Structured LDPC codes for high-density recording: large girth and low error floor [J].IEEE Transactions on Magnetics.2006, 42(2):208-213[10]Vasic B, Pedagani K, and Ivkovic M. High-rate girth-eight low-density parity-check codes on rectangular integer lattices [J].IEEE Transactions on Communications.2004, 52(8):1248-1252
  • 加载中
计量
  • 文章访问数:  3778
  • HTML全文浏览量:  132
  • PDF下载量:  1426
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-06-03
  • 修回日期:  2009-11-19
  • 刊出日期:  2010-05-19

目录

    /

    返回文章
    返回