高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种机载SAR层析三维成像算法

王金峰 皮亦鸣 曹宗杰

王金峰, 皮亦鸣, 曹宗杰. 一种机载SAR层析三维成像算法[J]. 电子与信息学报, 2010, 32(5): 1029-1033. doi: 10.3724/SP.J.1146.2009.00737
引用本文: 王金峰, 皮亦鸣, 曹宗杰. 一种机载SAR层析三维成像算法[J]. 电子与信息学报, 2010, 32(5): 1029-1033. doi: 10.3724/SP.J.1146.2009.00737
Wang Jin-feng, Pi Yi-ming, Cao Zong-jie. An Algorithm for Airborne SAR Tomography 3D Imaging[J]. Journal of Electronics & Information Technology, 2010, 32(5): 1029-1033. doi: 10.3724/SP.J.1146.2009.00737
Citation: Wang Jin-feng, Pi Yi-ming, Cao Zong-jie. An Algorithm for Airborne SAR Tomography 3D Imaging[J]. Journal of Electronics & Information Technology, 2010, 32(5): 1029-1033. doi: 10.3724/SP.J.1146.2009.00737

一种机载SAR层析三维成像算法

doi: 10.3724/SP.J.1146.2009.00737

An Algorithm for Airborne SAR Tomography 3D Imaging

  • 摘要: 针对机载平台难以同时满足多基线SAR层析3维成像所要求的短基线及大孔径问题,本文提出一种基于稀疏信号表示的机载SAR层析3维成像算法。首先基于高频率SAR目标的多散射中心假设,将目标在第3维成像方向上建模为稀疏分布模型,进而根据观测系统几何及信号频率特征构建了冗余字典,从而实现了成像问题到稀疏信号表示问题的转化,并最终通过求解以稀疏性度量函数为正则项的不适定方程获得成像结果。通过仿真实例的成像结果阐述了算法参数对成像的影响,并通过对SAR层析3维成像的仿真结果证明了算法的有效性。
  • Reigber A and Moreira A. First demonstration of airborne SAR tomography using multibaseline L-Band data[J].IEEE Transactions on Geoscience and Remote Sensing.2000, 38(5):2142-2152[2]Fornaro G and Serafino F. Three-dimensional focusing with mulitpass SAR data[J].IEEE Transactions on Geoscience and Remote Sensing.2003, 41(3):507-517[3]Homer J and Longstaff I D. High resolution 3-D imaging via multi-pass SAR[J].IEE Proceedings, -F: Radar, Sonar, Navigation.2002, 149(1):45-50[4]She Z and Gray D A. Three-dimensional SAR imaging via multiple pass processing[C][J].Geo-science and Remote Sensing Symposium, IGARSS 99 Proceedings, Hamburg, Germany.1999, 5:2389-2391[5]杜小勇等. 基于稀疏成份分析的几何绕射模型参数估计[J].电子与信息学报.2006, 28(2):362-366浏览Du Xiao-yong, et al.. Parameter estimation of GTD model based on sparse component analysis[J].Journal of Electronics Information Technology.2006, 28(2):362-366[6]Yong M and Konishi Y. Sparse Bayesian regression for head pose estimation[C]. 18th International Conference on Pattern Recognition, Hong Kong, Aug., 2006, 3: 507-510.[7]Esther K Y and Van M. Sparse registration for three- dimensional stress echocardiography[J].IEEE Transactions on Medical Imaging.2008, 27(11):1568-1579[8]Huang J and Huang X. Simultaneous image transformation and sparse representation recovery[C]. IEEE Conference on Computer Vision and Pattern Recognition, Alaska, USA, June, 2008: 1-8.[9]Vaeshney K R and Cetin M. Sparse representation in structured dictionaries with application to synthetic aperture radar[J].IEEE Transactions on Signal Processing.2008, 56(8):3548-3561[10]Potter L C and Schniter P. Sparse reconstruction for radar[C]. Proceedings of SPIE, Orlando, FL, USA, 2008: 6970-6973.[11]Xu P, et al.. Lp norm iterative sparse solution for EEG source localization[J].IEEE Transaction on Biomedical Engineering.2007, 54(3):400-409[12]Joel A T. Greed is good: Algorithmic results for sparse approximation[J].IEEE Transactions on Information Theory.2004, 50(10):2231-2242[13]Donoho D L. Stable recovery of sparse overcomplete representations in the presence of noise[J].IEEE Transactions on Information Theory.2006, 52(1):6-18[14]皮亦鸣, 等. 合成孔径雷达成像原理[M]. 成都: 电子科技大学出版社, 2007: 60-65.[15]Pi Y, et al.. The Imaging Principle of Synthesis Aperture Radar [M]. Chengdu: University of Electronic Science and Technology Press, 2007: 60-65.
  • 加载中
计量
  • 文章访问数:  3264
  • HTML全文浏览量:  85
  • PDF下载量:  1140
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-05-15
  • 修回日期:  2009-10-08
  • 刊出日期:  2010-05-19

目录

    /

    返回文章
    返回