高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类具有最优平均汉明相关特性的跳频序列族

刘方 彭代渊

刘方, 彭代渊. 一类具有最优平均汉明相关特性的跳频序列族[J]. 电子与信息学报, 2010, 32(5): 1257-1261. doi: 10.3724/SP.J.1146.2009.00726
引用本文: 刘方, 彭代渊. 一类具有最优平均汉明相关特性的跳频序列族[J]. 电子与信息学报, 2010, 32(5): 1257-1261. doi: 10.3724/SP.J.1146.2009.00726
Liu Fang, Peng Dai-yuan. A Class of Frequency-Hopping Sequence Family with Optimal Average Hamming Correlation Property[J]. Journal of Electronics & Information Technology, 2010, 32(5): 1257-1261. doi: 10.3724/SP.J.1146.2009.00726
Citation: Liu Fang, Peng Dai-yuan. A Class of Frequency-Hopping Sequence Family with Optimal Average Hamming Correlation Property[J]. Journal of Electronics & Information Technology, 2010, 32(5): 1257-1261. doi: 10.3724/SP.J.1146.2009.00726

一类具有最优平均汉明相关特性的跳频序列族

doi: 10.3724/SP.J.1146.2009.00726

A Class of Frequency-Hopping Sequence Family with Optimal Average Hamming Correlation Property

  • 摘要: 平均汉明相关是评价跳频序列性能的重要判据之一。该文基于模p的高次剩余构造了一类长度为p2,序列族的大小为(p-1)2的跳频序列族。该跳频序列族的平均汉明自相关值为0,平均汉明互相关值为1,关于平均汉明相关理论界是最优的。
  • Ding C S. Algebraic constructions of optimal frequency- hopping sequences[J].IEEE Transactions on Information Theory.2007, 53(7):2606-2610[2]Ding C S and Yin J X. Sets of optimal frequency-hopping sequences[J].IEEE Transactions on Information Theory.2008, 54(8):3741-3745[3]Ge G N, Miao Y, and Yao Z X. Optimal frequency hopping sequences: auto-and cross-correlation properties[J].IEEE Transactions on Information Theory.2009, 55(2):867-879[4]Titlebaum E L. Time-frequency hop signals part I: coding based upon the theory of linear congruences[J].IEEE Transactions on Aerospace and Electronic Systems.1981, 17(4):490-493[5]Titlebaum E L. Time-frequency hop signals part II: Coding based upon quadratic congruences[J].IEEE Transactions on Aerospace Electronic Systems.1981, 17(4):494-499[6]Bellegarda J R and Titlebaum E L. Time-frequency hop codes based upon extended quadratic congruences[J].IEEE Transactions on Aerospace Electronic Systems, November.1988, 24(6):726-742[7]Jia H D, Yuan D, and Peng D Y, et al.. On a general class of quadratic hopping sequences[J].Science in China, Ser. F.2008, 51(12):2101-2114[8]Maric S V. Frequency hop multiple access codes based upon the theory of cubic congruences[J].IEEE Transactions on Aerospace Electronic Systems.1990, 26(6):1035-1039[9]Fan P Z, Lee M H, and Peng D Y. New family of hopping sequences for time/frequency hopping CDMA systems[J].IEEE Transactions on Wireless Communications.2005, 4(6):2836-2842[10]Peng D Y, Peng T, and Fan P Z. Generalized class of cubic frequency-hopping sequences with large family size[J].IEE Proceedings on Communications.2005, 152(6):897-902[11]Peng D Y, Peng T, and Tang X H, et al.. A class of optimal frequency hopping sequences based upon the theory of power residues[C]. SETA 2008, Proceedings of the 5th international conference on Sequences and Their Applications, Lexington, KY, USA, September 14-18, 2008, 5203: 188-196.[12]Peng D Y, Niu X H, and Tang X H, et al.. The average Hamming correlation for the cubic polynomial hopping sequences[C]. IEEE IWCMC 2008, International Conference on Wireless Communications and Mobile Computing, Crete, Greece, August 6-8, 2008: 464-469.[13]潘承洞. 潘承彪. 初等数论[M]. 北京: 北京大学出版社,1991: 226-229.[14]Pan Cheng-dong and Pan Cheng-biao. Elementary Number Theory. Beijing. Beijing University Press, 1991: 226-229.
  • 加载中
计量
  • 文章访问数:  3622
  • HTML全文浏览量:  108
  • PDF下载量:  687
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-05-12
  • 修回日期:  2009-09-28
  • 刊出日期:  2010-05-19

目录

    /

    返回文章
    返回