高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

投影小波域MAP估计无源毫米波图像超分辨算法

金鑫 熊金涛 李良超 杨建宇

金鑫, 熊金涛, 李良超, 杨建宇. 投影小波域MAP估计无源毫米波图像超分辨算法[J]. 电子与信息学报, 2010, 32(4): 889-893. doi: 10.3724/SP.J.1146.2009.00547
引用本文: 金鑫, 熊金涛, 李良超, 杨建宇. 投影小波域MAP估计无源毫米波图像超分辨算法[J]. 电子与信息学报, 2010, 32(4): 889-893. doi: 10.3724/SP.J.1146.2009.00547
Jin Xin, Xiong Jin-tao, Li Liang-chao, Yang Jian-yu. Projected Wavelet-Domain MAP Estimation Super-resolution Algorithm for Passive Millimeter Wave Imaging[J]. Journal of Electronics & Information Technology, 2010, 32(4): 889-893. doi: 10.3724/SP.J.1146.2009.00547
Citation: Jin Xin, Xiong Jin-tao, Li Liang-chao, Yang Jian-yu. Projected Wavelet-Domain MAP Estimation Super-resolution Algorithm for Passive Millimeter Wave Imaging[J]. Journal of Electronics & Information Technology, 2010, 32(4): 889-893. doi: 10.3724/SP.J.1146.2009.00547

投影小波域MAP估计无源毫米波图像超分辨算法

doi: 10.3724/SP.J.1146.2009.00547

Projected Wavelet-Domain MAP Estimation Super-resolution Algorithm for Passive Millimeter Wave Imaging

  • 摘要: 在无源毫米波成像中,由于系统天线孔径大小的受限而使得成像的分辨率低。为了提高图像的分辨率,该文提出了一种投影小波域最大后验(MAP)估计毫米波图像超分辨算法(PWMAP)。该算法利用基于小波域广义高斯分布的MAP估计来恢复通带内的频谱;然后利用投影的非线性运算实现频谱外推。该算法不仅比以往的算法能提供更准确的先验建模,而且能在每步迭代时自适应地更新正则参数。实验结果验证了该算法的有效性。
  • Lettington A H, Yallop M R, and Dunn D. Review ofsuper-resolution techniques for passive millimeter-waveimaging[J]. Proceeding of SPIE, 2002, 4719: 203-239.[2]Ogawa Takahiro and Haseyama Miki. Adaptivereconstruction method of missing texture based on projectiononto convex sets [C]. ICASSP, IEEE InternationalConference on Acoustics, Speech and Signal Processing,Hawaii, America, 2007. Vol.1: 1697-1700.[3]Zhao Zong-qing, Ding Yong-kun, and Dong Jian-jun, et al..Richardson-Lucy method for decoding x-ray ring codeimage[J].Plasma Physics and Controlled Fusion.2007, 49(8):1145-1150[4]Hunt B R and Sementilli P. Description of a Poisson imagerysuper resolution algorithm[C]. Astronomical Data AnalysisSoftware and Systems,San Francisco, America, 1992. Vol.25:196-199.[5]Zheng Xin, Yang Ji-Yu, and Li Liang-cao, et al.. Waveletbasedsuper-resolution algorithms for passive millimeter waveimaging[C]. 2008 International Conference onCommunication, Circuits and Systems(ICCCAS'08), XiaMen, China, May 2008, Vol.2: 927-930.[6]Mallat S. A theory for multiresolution signal decomposition:The wavelet representation [J].IEEE Transactions onPattern Analysis and Machine Intelligence.1989, 11(7):674-693[7]张新明, 沈兰荪. 在小波变换域内实现图像的超分辨率复原[J]. 计算机学报, 2003, 26(9): 1183-1189.Zhang Xin-ming and Shen Lan-sun. Super-resolutionrestoration from image sequences in the wavelet domain[J].Chinese Journal of Computers, 2003, 26(9): 1183-1189.[8]王正明, 朱炬波. SAR图像提高分辨率技术[M]. 北京: 科学出版社, 2006: 143-144.[9]Eicke B. Iteration methods for convexly constrained ill-posedproblems in Hilbert space [J].Numerical Functional Analysisand Optimization.1992, 13(56):413-429[10]Vonesch C and Unser M. A fast thresholded landweberalgorithm for wavelet-regularized multidimensionaldeconvolution [J].IEEE Transactions on Image Processing.2008, 17(4):539-549[11]汪太月, 李志明. 一种广义高斯分布的参数快速估计法[J]. 工程地球物理学报, 2006, 3(3): 172-176.Wang Tai-yue and Li Zhi-ming. A fast parameter estimationof generalized Gaussian distribution [J]. Chinese Journal ofEngineering Geophysics, 2006, 3(3): 172-176.[12]Zheng Xin and Yang Jian-yu. Adaptive projected Landwebersuper-resolution algorithm for passive millimeter waveimaging[C]. 2007 SPIE Fifth International Symposium onMultispectral Image Processing and Pattern Recognition.Vol.6787: 67871k-1-67871k-7.
  • 加载中
计量
  • 文章访问数:  3560
  • HTML全文浏览量:  104
  • PDF下载量:  863
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-04-13
  • 修回日期:  2009-11-23
  • 刊出日期:  2010-04-19

目录

    /

    返回文章
    返回