高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于生成函数的格雷对分析与构造

涂宜锋 松藤信哉 范平志 李旭东

涂宜锋, 松藤信哉, 范平志, 李旭东. 基于生成函数的格雷对分析与构造[J]. 电子与信息学报, 2010, 32(2): 335-339. doi: 10.3724/SP.J.1146.2009.00533
引用本文: 涂宜锋, 松藤信哉, 范平志, 李旭东. 基于生成函数的格雷对分析与构造[J]. 电子与信息学报, 2010, 32(2): 335-339. doi: 10.3724/SP.J.1146.2009.00533
Tu Yi-feng, Shinya Matsufuji, Fan Ping-zhi, Li Xu-dong. Analysis and Construction of Golay Pair Based on Generating Function[J]. Journal of Electronics & Information Technology, 2010, 32(2): 335-339. doi: 10.3724/SP.J.1146.2009.00533
Citation: Tu Yi-feng, Shinya Matsufuji, Fan Ping-zhi, Li Xu-dong. Analysis and Construction of Golay Pair Based on Generating Function[J]. Journal of Electronics & Information Technology, 2010, 32(2): 335-339. doi: 10.3724/SP.J.1146.2009.00533

基于生成函数的格雷对分析与构造

doi: 10.3724/SP.J.1146.2009.00533

Analysis and Construction of Golay Pair Based on Generating Function

  • 摘要: 该文由传统的格雷对构造方法交织和级联出发,提出了一种新的称之为生成函数的格雷对构造方法,该方法适用于长度为2n 的格雷对。文中分析了格雷对生成函数和希尔维斯特Hadamard矩阵之间的关系,这不仅有助于计算给定长度的格雷对的数量,而且有助于将Hadamard分解应用于格雷对的生成中。采用生成函数,可以很方便地产生一系列的格雷对应用于多目标的环境。格雷对生成函数由二进制向量,与和或逻辑运算组成,极大地方便了序列生成器的硬件实现。
  • Fan Ping-zhi and Darnell M. Sequence Design for Communications Applications[M]. New York: Wiley, 1996, Chapter 13.[2]Oolun M K. Electrical systems identification using Golay complementary series[J].IEE Proceedings-Science, Measurement and Technology.1997, 144(6):267-272[3]Davis A J and Jedwab J. Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes[J].IEEE Transactions on Information Theory.1999, 45(7):2397-2417[4]Ana V A, Manuel G S, and Inigo C. Improvement of wideband radio channel swept time-delay cross-correlation sounders by using Golay sequences[J].IEEE Transactions on Vehicular Technology.2007, 56(1):362-368[5]Groenewald J M and Maharai B T. MIMO channel synchronization using Golay complementary pairs[C]. AFRICON, Windhoek, 2007, 1-5.[6]Shin Q S, Kung H T, and Tarokh V. Construction of block orthogonal Golay sequences and application to channel estimation of MIMO-OFDM systems[J].IEEE Transactions on Communications.2008, 56(1):27-31[7]Wang H M, Gao X Q, Jiang B, You X H, and Hong W. Efficient MIMO channel estimation using complementary sequences[J].IET Communications.2007, 1(5):962-969[8]Li Ying and Chu Wen-bin. More Golay sequences[J].IEEE Transactions on Information Theory.2005, 51(3):1141-1145[9]Rathinakumar A and Chaturvedi A K. Complete mutually orthogonal Golay complementary sets from Reed-Muller codes[J].IEEE Transactions on Information Theory.2008, 54(3):1339-1346[10]Lee M and Kaveh M. Fast Hadamard transform based on a simple matrix factorization[J].IEEE Transactions on Acoustics, Speech and Signal Processing.1986, 34(6):1666-1667[11]Tseng C C. Eigenvector and fractionalization of discrete Hadamard transform[C]. IEEE International Symposium On Circuits and Systems, IEEE Press, New Orleans, 2007, 2307-2310.[12]Takatsukasa K, Matsufuji S, and Tanada Y. Formalization of binary sequence sets with zero correlation zone[J]. IEICE Transactions on Fundmentals, 2004, 87(4): 887-891.[13]Fan Ping-zhi, Yuan Wei-na, and Tu Yi-feng. Z-complementary binary set[J].IEEE Signal Processing Letters.2007, 14(2):509-512
  • 加载中
计量
  • 文章访问数:  3622
  • HTML全文浏览量:  125
  • PDF下载量:  666
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-04-13
  • 修回日期:  2009-09-16
  • 刊出日期:  2010-02-19

目录

    /

    返回文章
    返回