高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新的二维角度估计的高分辨算法

杨雪亚 陈伯孝

杨雪亚, 陈伯孝. 一种新的二维角度估计的高分辨算法[J]. 电子与信息学报, 2010, 32(4): 953-958. doi: 10.3724/SP.J.1146.2009.00515
引用本文: 杨雪亚, 陈伯孝. 一种新的二维角度估计的高分辨算法[J]. 电子与信息学报, 2010, 32(4): 953-958. doi: 10.3724/SP.J.1146.2009.00515
Yang Xue-ya, Chen Bai-xiao. A High-Resolution Method for 2D DOA Estimation[J]. Journal of Electronics & Information Technology, 2010, 32(4): 953-958. doi: 10.3724/SP.J.1146.2009.00515
Citation: Yang Xue-ya, Chen Bai-xiao. A High-Resolution Method for 2D DOA Estimation[J]. Journal of Electronics & Information Technology, 2010, 32(4): 953-958. doi: 10.3724/SP.J.1146.2009.00515

一种新的二维角度估计的高分辨算法

doi: 10.3724/SP.J.1146.2009.00515

A High-Resolution Method for 2D DOA Estimation

  • 摘要: 该文针对常规2维波达方向估计的高分辨算法运算量大和稳健性差等问题,提出了一种新的2维角度估计的高分辨方法。该方法首先建立基于范数约束的最优化问题的目标函数;然后用迭代算法沿均匀面阵接收数据的方位向求最小化目标函数的稀疏解,得到方位、俯仰角耦合的空间角频率,并分离信号;最后对每个分离的信号,沿面阵俯仰向求稀疏解,得到信号的俯仰角,进而求得对应的方位角。针对算法存在测角盲区的问题,提出了一种改进方法,通过求解空间2维稀疏解得到信号的2维角度。与传统的高分辨算法相比,该方法对信噪比和快拍数要求不高、无需特征值分解和多维搜索过程,具有较高的分辨力和极低的旁瓣电平。
  • Zhang T T, Lu Y L, and Hui H T. Compensation for themutual coupling effect in uniform circular arrays for 2D DOAestimations employing the maximum likelihood technique[J].IEEE Transactions on Aerospace and Electronic Systems.2008, 44(3):1215-1221[2]Forster P, Larzabal P, and Boyer E. Threshold performanceanalysis of maximum likelihood DOA estimation[J].IEEETransactions on Signal Processing.2004, 52(11):3183-3191[3]Li Ming-hui and Lu Yi-long. Maximum likelihood DOAestimation in unknown colored noise fields[J].IEEETransactions on Aerospace and Electronic Systems.2008,44(3):1079-1090[4]Park Cheol-Sun, Choi Jun-Ho, and Yang Jong-Won, et al..Direction of arrival estimation using weighted subspacefitting with unknown number of signal sources. Proc. 11thInternational Conference on Advanced CommunicationTechnology, Phoenix Park, Dublin, Feb.15-18, 2009:2295-2298.[5]Jian C, Wang S, and Lin L. Two-dimensional DOAestimation of coherent signals based on 2D Unitary ESPRITmethod. Proc. 8th International Conference on SignalProcessing, Beijing, China, 2006: 16-20.[6]Gao Fei-fei, Nallanathan A, and Wang Yi-de. ImprovedMUSIC under the coexistence of both circular andnoncircular sources[J].IEEE Transactions on Signal Processing.2008, 56(7):3033-3038[7]Zoltowski M D and Lee T S. Maximum likelihood basedsensor array signal processing in the beamspace domain forlow angle radar tracking[J].IEEE Transactions on SignalProcessing.1991, 39(3):656-671[8]Bobin J, Starck J L, and Fadili J, et al.. Sparsity andmorphological diversity in blind source separation[J].IEEETransactions on Image Processing.2007, 16(11):2662-2674[9]Cheng Ping, Jiang Yi-cheng, and Xu Rong-qing. ISARimaging based on sparse signal representation with multiplemeasurement vectors. Proc. Int. Conf. Radar, Shanghai,China, Oct. 16-19, 2006: 1-4.[10]Pisharody G and Weile D S. Robust solution of time-domainintegral equations using loop-tree decomposition andbandlimited extrapolation. IEEE Transactions on Antennasand Propagation. 2005, 53(6): 2089-2098.[11]Gorodnitsky I F and Rao B D. Sparse signal reconstructionfrom limited data using FOCUSS: A re-weighted minimumnorm algorithm[J].IEEE Transactions on Signal Processing.1997, 45(3):600-616[12]Wipf D P and Rao B D. Bayesian learning for sparse signalreconstruction. Proc. IEEE ICASSP., La Jolla, CA, Apr.6-10,2003: 601-604.[13]Cotter S F, Rao B D, and Kjersti Engan, et al.. Sparsesolutions to linear inverse problems with multiplemeasurement vectors[J].IEEE Transactions on SignalProcessing.2005, 53(7):2477-2488[14]Malioutov D, Cetin M, and Willsky A S. A sparse signalreconstruction perspective for source localization with sensorarrays[J].IEEE Transactions on Signal Processing.2005, 53(8):3010-3022[15]Rao B D, Engan K, and Cotter S F, et al.. Subset selection innoise based on diversity measure minimization[J].IEEETransactions on Signal Processing.2003, 51(3):760-770[16]Sacchi M D, Ulrych T J, and Walker C J. Interpolation anextrapolation using a high-resolution discrete Fouriertransform[J].IEEE Transactions on Signal Processing.1998,46(1):31-38[17]Chen P, Wu T J, and Yang J. A comparative study of modelselection criteria for the number of signals[J].IET Radar, Sonar Navigation.2008, 2(3):180-188[18]Huang Lei, Wu Shun-jun, and Li Xia. Reduced-rank MDLmethod for source enumeration in high-resolution arrayprocessing[J].IEEE Transactions on Signal Processing.2007,55(12):5658-5667[19]Huang Lei, Long Teng, and Wu Shun-jun. Sourceenumeration for high-resolution array processing usingimproved gerschgorin radii without eigendecomposition[J].IEEE Transactions on Signal Processing.2008, 56(12):5916-5925
  • 加载中
计量
  • 文章访问数:  3343
  • HTML全文浏览量:  62
  • PDF下载量:  824
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-04-10
  • 修回日期:  2009-10-08
  • 刊出日期:  2010-04-19

目录

    /

    返回文章
    返回