高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于噪声子空间解析形式的快速DOA估计算法

艾名舜 马红光 刘刚

艾名舜, 马红光, 刘刚. 基于噪声子空间解析形式的快速DOA估计算法[J]. 电子与信息学报, 2010, 32(5): 1071-1076. doi: 10.3724/SP.J.1146.2009.00513
引用本文: 艾名舜, 马红光, 刘刚. 基于噪声子空间解析形式的快速DOA估计算法[J]. 电子与信息学报, 2010, 32(5): 1071-1076. doi: 10.3724/SP.J.1146.2009.00513
Ai Ming-shun, Ma Hong-guang, Liu Gang. DOA Estimation Algorithm Base on Analytical Solution of Noise Subspace[J]. Journal of Electronics & Information Technology, 2010, 32(5): 1071-1076. doi: 10.3724/SP.J.1146.2009.00513
Citation: Ai Ming-shun, Ma Hong-guang, Liu Gang. DOA Estimation Algorithm Base on Analytical Solution of Noise Subspace[J]. Journal of Electronics & Information Technology, 2010, 32(5): 1071-1076. doi: 10.3724/SP.J.1146.2009.00513

基于噪声子空间解析形式的快速DOA估计算法

doi: 10.3724/SP.J.1146.2009.00513

DOA Estimation Algorithm Base on Analytical Solution of Noise Subspace

  • 摘要: 该文针对特殊的信号环境各辐射源信号均值相等且不为零,利用均匀线阵导向矢量的Vandermonde结构,推导出了噪声子空间的解析形式,并以此为基础提出了利用均匀线阵和稀疏平面阵的1维和2维DOA估计快速算法。该算法不需要计算接收数据的协方差矩阵,也不需要任何矩阵分解,因此计算量远小于传统的超分辨DOA估计,而且无论信号之间是否具有相干性,该方法有相同的估计性能。仿真实验表明,在噪声均值为零且快拍数足够的条件下,该方法的估计性能整体上与Root-MUSIC算法相当,而在信噪比较低时性能优于后者。
  • Schmidt R O. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, ASSP-34(3): 276-280.[2]Roy R H and Kailath T. ESPRIT-Estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustic, Speech, Signal Processing, 1989, ASSP-37(7): 984-995.[3]Shan Tie-jun, Wax Mati, and Kailsth Thomas. On spatial smoothing for direction of arrival estimation of coherent signals[J]. IEEE Transactions on Acoustic, Speech, Signal Processing, 1985, ASSP-33(4): 806-811.[4]Ye Zhong-fu and Xu Xu. DOA Estimation by Exploiting the Symmetric Configuration of Uniform linear Array[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(12): 3717-3720.[5]曾操, 廖桂生. 基于数据矩阵分解的相干源方向估计新方法[J]. 系统工程与电子技术, 2005, 27(4): 303-305.Zeng Cao and Liao Gui-sheng. Direction finding in the presence of coherent signals based on data matrix decomposition[J]. Systems Engineering and Electronics, 2005, 27(4): 303-305.[6]Hu Xiao-qin, Chen Jian-wen, and Chen Hui, et al.. Estimation DOAs of the Coherent Sources Based on Toeplitz Decorrelation[C]. Proceeding of Congress on Image and Signal Processing, Sanya, May, 2008: 54-58.[7]黄磊, 吴顺君, 张林让. 采用Lanczos算法快速估计噪声子空间[J].电子与信息学报.2006, 28(1):21-25浏览Huang Lei, Wu Shun-jun, and Zhang Lin-rang. Fast noise subspace estimation via the Lanezos algorithm[J]. Journal of Electronics and Information Technology, 2006, 28(1): 21-25.[8]Strobach Prter. The fast Householder Bi-SVD subspace tracking algorithm[J].Signal Processing.2008, 88(11):2651-2661[9]Strobach Peter. The Householder compressor theorem and its application in subspace tracking[J].Signal Processing.2009, 89(5):857-875[10]Shi Zhen, Li Yan, and Yuan Wen-liang. Modeling of guidance signal of anti-radiation missile in the case of multiple sources[C]. Proceedings of the 2006. IEEE International Conference on Mechatronics and Automation. Luoyang, Jun. 2006: 2264-2268.[11]司锡才, 崔冬槐, 司伟建. 反辐射导弹对抗低截获概率雷达和诱饵技术[J]. 系统工程与电子技术, 2005, 27(9): 1549-1552.Si Xi-cai, Cui Dong-huai, Si Wei-jian. Technology of ARM contradict LIP radar and bait [J]. Systems Engineering and Electronic, 2005, 27(9): 1549-1552.[12]刁鸣, 缪善林. 一种二维ESPRIT算法参数配对新方法[J]. 系统工程与电子技术, 2007, 29(8): 1226-1229.Diao Ming and Miao Shan-li. New method of parameter matching for 2-D ESPRIT algorithm[J]. Systems Engineering and Electronic, 2007, 29(8): 1226-1229.[13]Rao B D and Hari K S. Performance analysis of Root- MUSIC[J]. IEEE Transactions on Acoustic, Speech, Signal Processing, 1989, ASSP-37(12): 1939-1949.
  • 加载中
计量
  • 文章访问数:  3566
  • HTML全文浏览量:  77
  • PDF下载量:  1226
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-04-10
  • 修回日期:  2009-10-16
  • 刊出日期:  2010-05-19

目录

    /

    返回文章
    返回