高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期为pm的广义割圆序列的线性复杂度

杜小妮 阎统江 石永芳

杜小妮, 阎统江, 石永芳. 周期为pm的广义割圆序列的线性复杂度[J]. 电子与信息学报, 2010, 32(4): 821-824. doi: 10.3724/SP.J.1146.2009.00430
引用本文: 杜小妮, 阎统江, 石永芳. 周期为pm的广义割圆序列的线性复杂度[J]. 电子与信息学报, 2010, 32(4): 821-824. doi: 10.3724/SP.J.1146.2009.00430
Du Xiao-ni, Yan Tong-jiang, Shi Yong-fang. Linear Complexity of Generalized Cyclotomic Sequences with Period pm[J]. Journal of Electronics & Information Technology, 2010, 32(4): 821-824. doi: 10.3724/SP.J.1146.2009.00430
Citation: Du Xiao-ni, Yan Tong-jiang, Shi Yong-fang. Linear Complexity of Generalized Cyclotomic Sequences with Period pm[J]. Journal of Electronics & Information Technology, 2010, 32(4): 821-824. doi: 10.3724/SP.J.1146.2009.00430

周期为pm的广义割圆序列的线性复杂度

doi: 10.3724/SP.J.1146.2009.00430

Linear Complexity of Generalized Cyclotomic Sequences with Period pm

  • 摘要: 该文将周期为pm(p为奇素数,m为正整数)广义割圆的研究推广到了任意阶的情形,构造了一类新序列,确定了该序列的极小多项式,指出线性复杂度可能的取值为pm-1, pm,(pm-1)/2和(pm+1)/2。并且指出,当选取的特征集满足一定条件时,对应序列的线性复杂度取值总是以上4种情形。结果表明,该类序列具有较好的线性复杂度性质。
  • Golomb S W. Shift Register Sequences[M]. Holden-Day, CA,San Francisco, 1967. Revised edition: Aegean Park, CA,Laguna Hills, 1982, Chapter 2.[2]Ding C. Binary cyclotomic generators [C]. Fast SoftwareEncryption: Berlin: Springer-Veralg, 1995, LNCS 1008:20-60.[3]Cusick T W, Ding C, and Renvall A. Stream Ciphers andNumber Theory[M]. Elsevier, Amsterdam, 1998, Chapter3-8.[4]Ding C and Helleseth T. New generalized cyclotomy and itsapplication[J].Finite Fields Applications.1998, 4(2):140-166[5]Chen Z and Li S. Some notes on generalized cyclotomicsequences of length pq[J].Journal of Computer Science andTechnology.2008, 23(5):843-850[6]Du X, Yan T, and Xiao G. Trace representation of somegeneralized cyclotomic sequences of length pq[J]. InformationSciences, 2008, 178(16): 3307-3316.[7]Ding C, Helleseth T, and Shan W J. On the linear complexityof Legendre sequence[J].IEEE Transaction on InformationTheory.1998, 44(3):1276-1278[8]Yan T, Huang B, and Xiao G. Cryptographic properties ofsome binary generalized cyclotomic sequences with the lengthp2 [J].Information Sciences.2008, 178(4):807-815[9]Du X, Chen Z, Shi A, and Sun R. Trace representation of anew class of sextic sequences of period p=3(mod8) [J]. IEICETransaction on Fundamentals, 2009, E92-A(2): 668-670.[10]Yan T, Sun R, and Xiao G. Autocorrelation and linearcomplexity of the new generalized cyclotomic sequences[J].IEICE Transaction on Fundamentals.2007, E90-A(4):857-864[11]Kim Y J, Jin S Y, and Song H Y. Linear complexity andautocorrelation of prime cube sequences[C]. AAECC 2007,Springer-Verlag Berlin Heidelberg 2007, LNCS 4851:188-197.[12]Yan T, Li S, and Xiao G. On the linear complexity ofgeneralized cyclotomic sequences with the period pm [J].Applied Mathematics Letters.2008, 21(2):187-193[13]Kim Y J and Song H Y. Linear complexity of prime n-squaresequences[C]. ISIT 2008, Toronto, Canada, July 6-11, 2008:2405-2408.[14]Yan T, Du X, and Xiao G. Linear complexity of binaryWhiteman generalized cyclotomic sequences of order 2k [J].Information Sciences, Doi:10.1016/j.ins. 2008. 11. 006.
  • 加载中
计量
  • 文章访问数:  3601
  • HTML全文浏览量:  111
  • PDF下载量:  857
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-03-30
  • 修回日期:  2009-10-19
  • 刊出日期:  2010-04-19

目录

    /

    返回文章
    返回