高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种时间序列频繁模式挖掘算法及其在WSAN行为预测中的应用

万里 廖建新 朱晓民

万里, 廖建新, 朱晓民. 一种时间序列频繁模式挖掘算法及其在WSAN行为预测中的应用[J]. 电子与信息学报, 2010, 32(3): 682-686. doi: 10.3724/SP.J.1146.2009.00300
引用本文: 万里, 廖建新, 朱晓民. 一种时间序列频繁模式挖掘算法及其在WSAN行为预测中的应用[J]. 电子与信息学报, 2010, 32(3): 682-686. doi: 10.3724/SP.J.1146.2009.00300
Wan Li, Liao Jian-xin, Zhu Xiao-min. Time Series Frequent Pattern Mining Algorithm and its Application to WSAN Behavior Prediction[J]. Journal of Electronics & Information Technology, 2010, 32(3): 682-686. doi: 10.3724/SP.J.1146.2009.00300
Citation: Wan Li, Liao Jian-xin, Zhu Xiao-min. Time Series Frequent Pattern Mining Algorithm and its Application to WSAN Behavior Prediction[J]. Journal of Electronics & Information Technology, 2010, 32(3): 682-686. doi: 10.3724/SP.J.1146.2009.00300

一种时间序列频繁模式挖掘算法及其在WSAN行为预测中的应用

doi: 10.3724/SP.J.1146.2009.00300

Time Series Frequent Pattern Mining Algorithm and its Application to WSAN Behavior Prediction

  • 摘要: 该文提出FPM(Frequent Pattern Mining)算法充分考虑频繁模式在时间序列中出现次数和分布。基于这些不同分布的频繁模式扩展MAMC(Mixed memory Aggregation Markov Chain)模型提出FMAMC(Frequent pattern based Mixed memory Aggregation Markov Chain)模型。将FPM和FMAMC应用到实际的智能楼宇项目中,证明和现有算法相比FPM算法具有较好的时间性能,FMAMC模型能够比MAMC模型更准确的预测WSAN节点行为。
  • Boukerche A. Handbook of Algorithms for WirelessNetworking and Mobile Computing. Chapman Hall/CRC, 2005.[2]Boukerche A and Samarah S. A novel algorithm for miningassociation rules in wireless Ad hoc sensor networks. IEEETransactions on Parallel and Distributed Systems, 2008,19(7): 143-160.[3]Laxman S. Stream prediction using a generative model basedon frequent episodes in event. Knowledge Discovery and DataMining Conference, Las Vegas, US. Aug. 24-27, 2008:101-110.[4]Laxman S, Sastry P S, and Unnikrishnan K P. Discoveringfrequent episodes and learning Hidden Markov Models: Aformal connection[J].IEEE Transactions on Knowledge andData Engineering.2005, 17(11):1505-1517[5]Chudova D and Smyth P. Pattern discovery in sequencesunder a Markovian assumption. Knowledge Discovery andData Mining Conference, Alberta, Canada, July 17-19 2002:109-118.[6]Alon J, Sclaroff S, Kollios G, and Pavlovic V. Discoveringclusters in motion time series data. Computer Vision andPattern Recognition Conference, Wisconsin, U S, June 2003:I-375-I-381.[7]Wang X and Kabn A. A dynamic bibliometric model foridentifying online communities. Journal of Data MiningKnowledge Discovery, 2008, 10(3): 42-68.[8]Kiernan J and Terzi E. Constructing comprehensivesummaries of large event sequences. Knowledge Discoveryand Data Mining Conference, Las Vegas, U.S. Aug. 24-27,2008: 131-140.[9]Pei J, Han J, Pinto H, Chen Q, Dayal U, and Hsu M C.PrefixSpan: Mining sequential patterns efficiently byprefix-projected pattern growth. International Conference ofData Engineering, Heidelberg, Germany, 2001: 215-224.[10]Meger N and Rigotti C. Constraint-based mining of episoderules and optimal window sizes. 8th European Conference onPrinciples and Practice of Knowledge Discovery in Databases,Pisa, Italy, 2004: 313-324.
  • 加载中
计量
  • 文章访问数:  4078
  • HTML全文浏览量:  106
  • PDF下载量:  1084
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-03-09
  • 修回日期:  2009-09-03
  • 刊出日期:  2010-03-19

目录

    /

    返回文章
    返回