高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于流形分离技术的稀疏均匀圆阵快速DOA估计方法

潘捷 周建江 汪飞

潘捷, 周建江, 汪飞. 基于流形分离技术的稀疏均匀圆阵快速DOA估计方法[J]. 电子与信息学报, 2010, 32(4): 963-966. doi: 10.3724/SP.J.1146.2009.00175
引用本文: 潘捷, 周建江, 汪飞. 基于流形分离技术的稀疏均匀圆阵快速DOA估计方法[J]. 电子与信息学报, 2010, 32(4): 963-966. doi: 10.3724/SP.J.1146.2009.00175
Pan Jie, Zhou Jian-jiang, Wang Fei. A Fast Algorithm of DOA Estimation for Sparse Uniform Circular Array Based on Manifold Separation Technique(MST)[J]. Journal of Electronics & Information Technology, 2010, 32(4): 963-966. doi: 10.3724/SP.J.1146.2009.00175
Citation: Pan Jie, Zhou Jian-jiang, Wang Fei. A Fast Algorithm of DOA Estimation for Sparse Uniform Circular Array Based on Manifold Separation Technique(MST)[J]. Journal of Electronics & Information Technology, 2010, 32(4): 963-966. doi: 10.3724/SP.J.1146.2009.00175

基于流形分离技术的稀疏均匀圆阵快速DOA估计方法

doi: 10.3724/SP.J.1146.2009.00175

A Fast Algorithm of DOA Estimation for Sparse Uniform Circular Array Based on Manifold Separation Technique(MST)

  • 摘要: 该文针对阵元数有限以及阵元稀疏的均匀圆阵,提出基于流形分离技术(Manifold Separation Technique,MST)的快速波达方向估计算法,PM-Root-MUSIC方法。该方法避免了均匀圆阵中基于相位模式激励原理的波束空间变换所带来的映射误差,同时利用传播因子(PM)和根MUSIC算法,避免了传统算法中的特征分解和谱峰搜索过程,有效降低了计算量,并获得了接近克罗美劳(Cramer-Rao)下限的估计精度。仿真实验验证了该文算法的有效性。
  • Mathews C P and Zoltowski M D. Eigenstructure techniquesfor 2-D angle estimation with uniform circular arrays[J].IEEETransactions on Signal Processing.1994, 42(9):2395-2407[2]Davies D E N and Rudge A W. Ed. The Handbook ofAntenna Design. London, UK, Peregrinus, 1983, Vol.2,Ch.12.[3]Lian Xiao-hua and Zhou Jian-jiang. 2-D DOA estimationfor uniform circular arrays with PM. 7th InternationalSymposium on Antennas, Propagation EM Theory, Beijing,2006: 1-4.[4]Belloni F and Koivunen V. Beamspace transform for UCA:Error analysis and bias reduction[J].IEEE Transactions onSignal Processing.2006, 54(8):3078-3089[5]Belloni F, Richter A, and Koivunen V. Extension ofroot-MUSIC to non-ULA array configurations IEEEInternational Conference on Acoustics, Speech, SignalProcessing (ICASSP), France, 2006: 897-900.[6]Belloni F, Richter A, and Koivunen V. DoA estimation viamanifold separation for arbitrary array structures[J].IEEETransactions on Signal Processing.2007, 55(10):4800-4810[7]Costa M, Richter A, Belloni F, and Koivunen V. Polynomialrooting-based direction finding for arbitrary arrayconfigurations 5th IEEE Sensor Array and MultichannelSignal Processing Workshop (SAM08) Germeny, 2008: 58-62.[8]Doron M A and Doron E. Wavefield modeling and arrayprocessing, Part ISpatial sampling[J].IEEE Transactionson Signal Processing.1994, 42(10):2549-2559[9]Rubsamen M and Gershman A B. Performance analysis ofroot-music-based direction-of-arrival estimation for arbitrarynon-uniform array , 5th IEEE Sensor Array and MultichannelSignal Processing Workshop (SAM08), Germeny. 2008:381-385.[10]Goossens R, Rogier H, and Werbrouck S. UCA root-MUSICwith sparse uniform circular arrays[J].IEEE Transactions onSignal Processing.2008, 56(8):4095-4099[11]Marcos S, Marsal A, and Benidir M. Propagator method forsource bearing estimation[J].Signal Processing.1995, 42(2):121-138[12]季飞, 等. 基于DOA矩阵法的矢量传感器阵列二维波达方向估计[J].电子与信息学报.2008, 30(8):1886-1889浏览[13]Neff C A and Reif J H. An efficient algorithm for thecomplex roots problem[J].Journal of Complexity.1996, 12(2):81-115[14]Lang M and Frenzel B C. Polynomial root finding[J].IEEESignal Processing Letters.1994, 1(10):141-143
  • 加载中
计量
  • 文章访问数:  3189
  • HTML全文浏览量:  110
  • PDF下载量:  1110
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-02-13
  • 修回日期:  2009-12-23
  • 刊出日期:  2010-04-19

目录

    /

    返回文章
    返回