高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

归一化子带自适应滤波器步长控制

倪锦根 商慧亮 李锋

倪锦根, 商慧亮, 李锋. 归一化子带自适应滤波器步长控制[J]. 电子与信息学报, 2009, 31(11): 2606-2609. doi: 10.3724/SP.J.1146.2008.01708
引用本文: 倪锦根, 商慧亮, 李锋. 归一化子带自适应滤波器步长控制[J]. 电子与信息学报, 2009, 31(11): 2606-2609. doi: 10.3724/SP.J.1146.2008.01708
Ni Jin-gen, Shang Hui-liang, Li Feng. Step-Size Control for the Normalized Subband Adaptive Filter[J]. Journal of Electronics & Information Technology, 2009, 31(11): 2606-2609. doi: 10.3724/SP.J.1146.2008.01708
Citation: Ni Jin-gen, Shang Hui-liang, Li Feng. Step-Size Control for the Normalized Subband Adaptive Filter[J]. Journal of Electronics & Information Technology, 2009, 31(11): 2606-2609. doi: 10.3724/SP.J.1146.2008.01708

归一化子带自适应滤波器步长控制

doi: 10.3724/SP.J.1146.2008.01708

Step-Size Control for the Normalized Subband Adaptive Filter

  • 摘要: 定步长子带自适应滤波器必须在快的收敛速度和低的稳态失调之间进行折中。根据自适应滤波器系数向量均方偏差与步长之间的函数关系,该文采用使自适应滤波器系数向量均方偏差在每次迭代更新时最速下降的方法,提出一种步长控制算法来解决上述问题。该算法可以兼得快的收敛速度和低的稳态失调。实验结果验证了该方法的有效性。
  • Haykin S. Adaptive Filter Theory [M]. Fourth edition, UpperSaddle River, NJ: Prentice-Hall, 2002, 22-34: 331-340.[2]Diniz P S R. Adaptive Filtering: Algorithms and PracticalImplementation [M]. Second edition, Boston: KluwerAcademic Publishers, 2002: 467-499.[3]Courville M D and Duhamel P. Adaptive filtering insubbands using a weighted criterion [J].IEEE Transactionson Signal Processing.1998, 46(9):2359-2371[4]Pradhan S S and Reddy V U. A new approach to subbandadaptive filtering [J].IEEE Transactions on SignalProcessing.1999, 47(3):655-664[5]Lee K A and Gan W S. Improving convergence of the NLMSalgorithm using constrained subband updates [J].IEEESignal Processing Letters.2004, 11(9):736-739[6]Miyagi S and Sakai H. Convergence analysis of alias-freesubband adaptive filters based on a frequency domaintechnique [J].IEEE Transactions on Signal Processing.2004,52(1):79-89[7]Lee K A and Gan W S. Inherent decorrelating and leastperturbation properties of the normalized subband adaptivefilter [J].IEEE Transactions on Signal Processing.2006,54(11):4475-4480[8]Lee K A and Gan W S. On the subband orthogonality ofcosine-modulated filter banks [J].IEEE Transactions onCircuits and Systems II: Express Briefs.2006, 53(8):677-681[9]Lee K A.[J].Gan W S, and Kuo S M. Mean-square performanceanalysis of the normalized subband adaptive filter [C]. TheFortieth Asilomar Conference on Signals, Systems Computers, Pacific Grove, California, October 29-November.2006,:-[10]Bershad N J, Bermudez J C M, and Tourneret J Y. An affinecombination of two LMS adaptive filtersTransientmean-square analysis [J].IEEE Transactions on SignalProcessing.2008, 56(5):1853-1864[11]Benesty J, Rey H, and Vega L R, et al.. A nonparametric VSSNLMS algorithm [J].IEEE Signal Processing Letters.2006,13(10):581-584[12]Shin H C, Sayed A H, and Song W J. Variable step-sizeNLMS and affine projection Algorithms[J].IEEE SignalProcessing Letters.2004, 11(2):132-135[13]Petraglia M R and Batalheiro P. Nonuniform subbandadaptive filtering with critical sampling[J].IEEE Transactionson Signal Processing.2008, 56(2):565-575[14]Kong S J, Hwang K Y, and Song W J. An affine projectionalgorithm with dynamic selection of input vectors [J].IEEESignal Processing Letters.2007, 14(8):529-532[15]Rey H, Vega L R, and Tressens S, et al.. Variable explicitregularization in affine projection algorithm: robustness andoptimal choice [J].IEEE Transactions on Signal Processing.2007, 55(5):2096-2109
  • 加载中
计量
  • 文章访问数:  3803
  • HTML全文浏览量:  144
  • PDF下载量:  793
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-12-15
  • 修回日期:  2009-05-18
  • 刊出日期:  2009-11-19

目录

    /

    返回文章
    返回