最小二乘法重构r重平移不变子空间采样的研究
doi: 10.3724/SP.J.1146.2008.01604
Studying on Reconstruction Sampling in Shift-Invariant Subspace with Multiplicity r from Least Squares Method
-
摘要: 该文根据r重平移不变子空间采样模型,提出了一种基于最小二乘法的r重平移不变子空间采样重构方法,并且获得了重构滤波器的频域表达式;同时利用Hilbert空间投影理论分析了重构误差;最后,以调幅信号为例,验证了最小二乘法重构r重平移不变子空间采样的可行性。Abstract: According to the model of sampling in shift-invariant subspace with multiplicity r, this paper proposes a reconstruction method of sampling in shift-invariant subspace with multiplicity r based on least squares method, moreover, obtains the reconstruction filters frequency expression . And the reconstruction error is analyzed from the projection theory of Hilbert space. Finally, with amplitude modulation signal as example, the reconstruction method of sampling in shift-invariant subspace with multiplicity r based on least squares method is proved by simulation, the results show that the reconstruction algorithm is effective.
-
Butzer P L. A survey of the Whittaker-Shannon samplingtheorem and some of its extensions. Journal of MathematicalResearch and Exposition, 1983, 3(1): 185-212.[2]Chen W, Itoh S, and Shiki J. On sampling in shift-invariantspaces[J].IEEE Transactions on Information Theory.2002,48(10):2802-2810[3]Chang Eon Shin, Mun Bae Lee, and Kyung Soo Rim,Nonuniform sampling of bandlimited functions. IEEETransactions on Information Theory, 2008, 54(7): 3814-3819.[4]Selesnick I W. Interpolating multiwavelets bases and thesampling theorem[J].IEEE Transactions on Signal Processing.1999, 47(6):1615-1621[5]Remani S and Unser M. Nonideal sampling andregularization Ttheory[J].IEEE Transactions on SignalProcessing.2008, 56(3):1055-1070[6]Eldar Y C and Unser M. Non-ideal sampling andinterpolation from noisy observations in shift-invariantspaces[J].IEEE Transactions on Signal Processing.2006, 54(7):2636-2651[7]Vaidyanathan P P. Generalization of the sampling theorem:seven decades after nyquist[J].IEEE Transactions on Circuitsand System.2001, 48(9):1094-1109[8]Lu Y M and Do M N. A theory for sampling signals From aUnion of Subspaces[J].IEEE Transactions on Signal Processing.2008, 56(6):2334-2345[9]Tang W S. Oblique projections, biorthogonal Riesz bases andmultiwavelets in Hilbert space[J].Proceedings of the AmericanMathematical Society.2000, 128(2):463-473
计量
- 文章访问数: 3304
- HTML全文浏览量: 81
- PDF下载量: 729
- 被引次数: 0