高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

最小二乘法重构r重平移不变子空间采样的研究

朱肇轩 王厚军 王志刚

朱肇轩, 王厚军, 王志刚. 最小二乘法重构r重平移不变子空间采样的研究[J]. 电子与信息学报, 2009, 31(11): 2649-2652. doi: 10.3724/SP.J.1146.2008.01604
引用本文: 朱肇轩, 王厚军, 王志刚. 最小二乘法重构r重平移不变子空间采样的研究[J]. 电子与信息学报, 2009, 31(11): 2649-2652. doi: 10.3724/SP.J.1146.2008.01604
Zhu Zhao-xuan, Wang Hou-jun, Wang Zhi-gang. Studying on Reconstruction Sampling in Shift-Invariant Subspace with Multiplicity r from Least Squares Method[J]. Journal of Electronics & Information Technology, 2009, 31(11): 2649-2652. doi: 10.3724/SP.J.1146.2008.01604
Citation: Zhu Zhao-xuan, Wang Hou-jun, Wang Zhi-gang. Studying on Reconstruction Sampling in Shift-Invariant Subspace with Multiplicity r from Least Squares Method[J]. Journal of Electronics & Information Technology, 2009, 31(11): 2649-2652. doi: 10.3724/SP.J.1146.2008.01604

最小二乘法重构r重平移不变子空间采样的研究

doi: 10.3724/SP.J.1146.2008.01604
基金项目: 

国家自然科学基金(60772145)和新世纪优秀人才支持计划(NCET- 06-0808)资助课题

Studying on Reconstruction Sampling in Shift-Invariant Subspace with Multiplicity r from Least Squares Method

  • 摘要: 该文根据r重平移不变子空间采样模型,提出了一种基于最小二乘法的r重平移不变子空间采样重构方法,并且获得了重构滤波器的频域表达式;同时利用Hilbert空间投影理论分析了重构误差;最后,以调幅信号为例,验证了最小二乘法重构r重平移不变子空间采样的可行性。
  • Butzer P L. A survey of the Whittaker-Shannon samplingtheorem and some of its extensions. Journal of MathematicalResearch and Exposition, 1983, 3(1): 185-212.[2]Chen W, Itoh S, and Shiki J. On sampling in shift-invariantspaces[J].IEEE Transactions on Information Theory.2002,48(10):2802-2810[3]Chang Eon Shin, Mun Bae Lee, and Kyung Soo Rim,Nonuniform sampling of bandlimited functions. IEEETransactions on Information Theory, 2008, 54(7): 3814-3819.[4]Selesnick I W. Interpolating multiwavelets bases and thesampling theorem[J].IEEE Transactions on Signal Processing.1999, 47(6):1615-1621[5]Remani S and Unser M. Nonideal sampling andregularization Ttheory[J].IEEE Transactions on SignalProcessing.2008, 56(3):1055-1070[6]Eldar Y C and Unser M. Non-ideal sampling andinterpolation from noisy observations in shift-invariantspaces[J].IEEE Transactions on Signal Processing.2006, 54(7):2636-2651[7]Vaidyanathan P P. Generalization of the sampling theorem:seven decades after nyquist[J].IEEE Transactions on Circuitsand System.2001, 48(9):1094-1109[8]Lu Y M and Do M N. A theory for sampling signals From aUnion of Subspaces[J].IEEE Transactions on Signal Processing.2008, 56(6):2334-2345[9]Tang W S. Oblique projections, biorthogonal Riesz bases andmultiwavelets in Hilbert space[J].Proceedings of the AmericanMathematical Society.2000, 128(2):463-473
  • 加载中
计量
  • 文章访问数:  3304
  • HTML全文浏览量:  81
  • PDF下载量:  729
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-12-02
  • 修回日期:  2009-05-04
  • 刊出日期:  2009-11-19

目录

    /

    返回文章
    返回