高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Multibandelets的自适应图像压缩

杨晓慧 焦李成 李登峰

杨晓慧, 焦李成, 李登峰. 基于Multibandelets的自适应图像压缩[J]. 电子与信息学报, 2009, 31(7): 1615-1619. doi: 10.3724/SP.J.1146.2008.00765
引用本文: 杨晓慧, 焦李成, 李登峰. 基于Multibandelets的自适应图像压缩[J]. 电子与信息学报, 2009, 31(7): 1615-1619. doi: 10.3724/SP.J.1146.2008.00765
Yang Xiao-hui, Jiao Li-cheng, Li Deng-feng. Adaptive Image Compression Based on Multibandelets[J]. Journal of Electronics & Information Technology, 2009, 31(7): 1615-1619. doi: 10.3724/SP.J.1146.2008.00765
Citation: Yang Xiao-hui, Jiao Li-cheng, Li Deng-feng. Adaptive Image Compression Based on Multibandelets[J]. Journal of Electronics & Information Technology, 2009, 31(7): 1615-1619. doi: 10.3724/SP.J.1146.2008.00765

基于Multibandelets的自适应图像压缩

doi: 10.3724/SP.J.1146.2008.00765
基金项目: 

国家自然科学基金(60702062), 河南省创新型科技人才队伍建设工程(084100510012)和河南省教育厅自然科学基金(2008B510001)资助课题

Adaptive Image Compression Based on Multibandelets

  • 摘要: 为了在图像压缩时更好地保护具有方向性的几何结构信息,该文构建了一种新的基函数,称为Multibandelets,并结合Shannon编码用于自然图像的压缩。实验结果表明:与多小波、具有同样消失矩的小波和Bandelets相比较,基于Multibandelets的图像压缩在视觉效果和客观衡量指标两方面都有改善,尤其对具有方向性的细节和纹理信息具有更好的表示。
  • Lewis A S and Knowles G. Image compression using the 2-Dwavelet transform[J].IEEE Transactions on Image Processing.1992, 1(4):244-250[2]Munteanu A, Cornelis J, and Van Der Auwera G, et al..Wavelet compression-the quadtree coding approach[J].IEEETransactions on Information Technology in Biomedicine.1999, 3(3):176-185[3]Zeng Z H and Cumming I G. SAR image data compressionusing a tree-structured wavelet transform[J].IEEETransactions on Geoscience and Remote Sensing.2001, 39(3):546-552[4]Hou X S, Liu G Z, and Zou Y Y. SAR image datacompression using wavelet packet transform anduniversity-trellis coded quantization[J].IEEE Transactions onGeoscience and Remote Sensing.2004, 42(11):2632-2641[5]Shapiro J M. Embedded image coding using zerotree ofwavelet coefficients[J].IEEE Transactions on Signal Processing.1993, 41(12):3445-3462[6]Pearlman A and Said W A. A new fast and efficient imagecoder based on set partitioning in hierarchical trees[J].IEEETransactions on Circuits and System for Video Technology.1996, 6(3):243-250[7]Lakhani G. Modified JPEG Huffman coding[J].IEEETransactions on Image Processing.2003, 12(2):159-169[8]潘志刚, 王岩飞. 基于DCT 的分块自适应量化算法及其用于SAR 原始数据压缩[J].电子与信息学报.2007, 29(8):1784-1788浏览[9]Penne E Le and Mallat S. Image compression withgeometrical wavelets[J].Proceedings of IEEE Conference onImage Processing (ICIP00). Vancouver, Canada.2000, 1(1):661-664[10]Pennec E Le and Mallat S. Sparse geometric imagerepresentations with bandelets. IEEE Transactions on ImageProcessing, 2005, 14(4): 423-438.[11]Pennec E Le and Mallat S. Bandelet image approximationand compression[J].SIAM: Multiscale Modeling and Simulation.2005, 4(3):992-1039[12]Peyr G and Mallat S. Discrete bandelets with geometricorthogonal filters. IEEE International Conference on ImageProcessing, Vancouver, 2005: 65-68.[13]Peyr G and Mallat S. Surface compression with geometricbandelets[J].ACM Transactions on Graphics.2005, 24(3):601-608[14]Yang S, Liu F, and Wang M, et al.. Multiscale Bandeletimage compression. International Symposium on IntelligentSignal Processing and Communication Systems, Xiamen,2007: 412-415.[15]孙文方, 宋蓓蓓, 赵亦工. 联合Contourlet 和Bandelet 的变换在图像压缩中的应用. 西安电子科技大学学报, 2007, 34(4):611-615.Sun Wen-fang, Song Bei-bei, and Zhao Yi-gong. Applicationof joint Contourlet and Bandelet transforms in imagecompression. Journal of Xidian University, 2007, 34(4):611-615.[16]张军, 廉蔺, 黄英君等. 联合二代Bandelet 和Wavelet 对图像进行分层压缩. 国防科技大学学报, 2007, 29(5): 54-59.Zhang Jun, Lian Lin, and Huang Ying-jun, et al..Two-leyered image compression combing wavelet and thesecond generation bandelet. Journal of National University ofDefense Technology, 2007, 29(5): 54-59.[17]Donoho D L. Wedgelets: nearly-minimax estimation of edges[J].Annals of Statistics.1999, 27(3):859-897[18]Goodman T N T and Lee S L. Wavelets of multiplicity[J].Transactions on American Mathematics Society.1994,342(1):307-324[19]Geronimo J S, Hardin D P, and Massopust P R. Fractalfunctions and wavelet expansions based on several scalingfunctions[J].Journal of Approximation Theory.1994, 78(3):373-401[20]Chui C K and Li C. Nonorthogonal wavelet packets SIAM[J].Journal on Mathematical Analysis.1993, 24(3):712-738[21]Devore R, Jawerth B, and Lueier B J. Image compressionthrough wavelet transform coding[J].IEEE Transactions onInformation Theory.1992, 38(2):719-746[22]王玲, 宋国乡. 多小波的预处理及其在图像压缩中的应用. 电子学报, 2001, 29(10): 1418-1420.Wang Ling and Song Guo-xiang. The pre-processing ofmultiwavelet and its application in image compression. ActaElectronica Sinica, 2001, 29(10): 1418-1420.
  • 加载中
计量
  • 文章访问数:  3341
  • HTML全文浏览量:  68
  • PDF下载量:  989
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-07-23
  • 修回日期:  2009-03-09
  • 刊出日期:  2009-07-19

目录

    /

    返回文章
    返回