Donoho D L and Flesia A Gl. Can recent innovations inharmonic analysis explain key findings in natural imagestatistics [J]. Network: Computation in Neural Systems, 2001,12(3): 371-393.[2]焦李成, 谭山. 图像的多尺度几何分析: 回顾和展望[J]. 电子学报, 2003, 31(12A): 1975-1981.Jiao Li-cheng and Tan Shan. Development and prospect ofimage multiscale geometric analysis[J]. Acta ElectronicaSinica, 2003, 31(12A): 1975-1981.[3]Candes E J. Ridgelets: theory and applications[D]. [PH.D.dissertation], Stanford University, 1998.[4]Candes E J. Monoscale ridgelets for the representation ofimages with edges[R]. [Technical Report], Stanford University,1999.[5]Donoho D L. Orthonormal ridgelet and linear singularities[J].SIAM Journal on Mathematical Analysis.2000, 31(5):1062-1099[6]Candes E J and Donoho D L. Curvelets: a surprisinglyeffective nonadaptive representation for objects with edges[C].Curves and Surfaces Fitting, Saint-Malo 1999. Nashville, TN,2000: 105-120.[7]Candes E J and Donoho D L. New tight frames of crveletsand optimal representations of objects with2 C singularities[J].Communications on Pure and AppliedMathematics.2004, 57(2):219-266[8]Pennec E L and Mallat S. Sparse geometric imagerepresentation with bandelets[J].IEEE Transactions onImage Processing.2005, 14(4):423-438[9]Guo K and Labate D. Optimally sparse multidimensionalrepresentation using Shearlets[J].SIAM Journal onMathematical Analysis.2007, 39(1):298-318[10]汪凯斌, 俞卞章, 赵健等. 基于Gabor 小波的无边缘活动围道纹理分割方法[J].电子与信息学报.2007, 29(12):2819-2821浏览[11]Demanet L and Ying L X. Wave atoms and aparsity ofoscillatory patterns[J].Applied and Computational HarmonicAnalysis.2007, 23(3):368-387[12]Ma Jian-wei. Characterization of textural surfaces using waveatoms[J]. Applied Physics Letter, 2007, 90(5): 1-3.[13]Plonka G and Ma Jian-wei. Nonlinear regularizedreaction-diffusion filters for denoising of images withtextures[J].IEEE Transactions on Image Processing.2008,17(8):1283-1294[14]Villemoes L. Wavelet packets with uniform time-frequencylocation[J].Comptes-Rendus Mathematique.2002, 335(10):793-796[15]Rudin L I, Osher S J, and Fatemi E. Nonlinear Totalvariation based noise removal algorithms [J].Physica D.1992,60(1-4):259-268[16]Chambolle A and Lucier B J. Interpreting translationinvariantwavelet shrinkage as a new image smoothing scalespace[J].IEEE Transactions on Image Processing.2001, 10(7):993-1000[17]DeVore R A. Nonlinear approximation[J].Acta Numerica.1998, 7(1):51-150
|