高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

波原子纹理图像阈值算法

刘国军 冯象初 张选德

刘国军, 冯象初, 张选德. 波原子纹理图像阈值算法[J]. 电子与信息学报, 2009, 31(8): 1791-1795. doi: 10.3724/SP.J.1146.2008.00595
引用本文: 刘国军, 冯象初, 张选德. 波原子纹理图像阈值算法[J]. 电子与信息学报, 2009, 31(8): 1791-1795. doi: 10.3724/SP.J.1146.2008.00595
Liu Guo-jun, Feng Xiang-chu, Zhang Xuan-de. Threshold Algorithm of Texture Images with Wave Atoms[J]. Journal of Electronics & Information Technology, 2009, 31(8): 1791-1795. doi: 10.3724/SP.J.1146.2008.00595
Citation: Liu Guo-jun, Feng Xiang-chu, Zhang Xuan-de. Threshold Algorithm of Texture Images with Wave Atoms[J]. Journal of Electronics & Information Technology, 2009, 31(8): 1791-1795. doi: 10.3724/SP.J.1146.2008.00595

波原子纹理图像阈值算法

doi: 10.3724/SP.J.1146.2008.00595
基金项目: 

国家自然科学基金(60872138)资助项目

Threshold Algorithm of Texture Images with Wave Atoms

  • 摘要: 该文提出了一个新的依赖于Besov光滑参数和尺度的波原子软阈值纹理图像去噪模型。该模型充分考虑了新的多尺度几何分析工具波原子的优良特性,比如波原子正交基和框架的灵活选取,对振荡纹理图像的稀疏表示,波长和支撑尺寸满足抛物尺度关系等。数值实验表明,新模型比硬阈值和软阈值具有更好的去噪性能,而且随着Besov光滑参数的增加信噪比有明显提高。
  • Donoho D L and Flesia A Gl. Can recent innovations inharmonic analysis explain key findings in natural imagestatistics [J]. Network: Computation in Neural Systems, 2001,12(3): 371-393.[2]焦李成, 谭山. 图像的多尺度几何分析: 回顾和展望[J]. 电子学报, 2003, 31(12A): 1975-1981.Jiao Li-cheng and Tan Shan. Development and prospect ofimage multiscale geometric analysis[J]. Acta ElectronicaSinica, 2003, 31(12A): 1975-1981.[3]Candes E J. Ridgelets: theory and applications[D]. [PH.D.dissertation], Stanford University, 1998.[4]Candes E J. Monoscale ridgelets for the representation ofimages with edges[R]. [Technical Report], Stanford University,1999.[5]Donoho D L. Orthonormal ridgelet and linear singularities[J].SIAM Journal on Mathematical Analysis.2000, 31(5):1062-1099[6]Candes E J and Donoho D L. Curvelets: a surprisinglyeffective nonadaptive representation for objects with edges[C].Curves and Surfaces Fitting, Saint-Malo 1999. Nashville, TN,2000: 105-120.[7]Candes E J and Donoho D L. New tight frames of crveletsand optimal representations of objects with2 C singularities[J].Communications on Pure and AppliedMathematics.2004, 57(2):219-266[8]Pennec E L and Mallat S. Sparse geometric imagerepresentation with bandelets[J].IEEE Transactions onImage Processing.2005, 14(4):423-438[9]Guo K and Labate D. Optimally sparse multidimensionalrepresentation using Shearlets[J].SIAM Journal onMathematical Analysis.2007, 39(1):298-318[10]汪凯斌, 俞卞章, 赵健等. 基于Gabor 小波的无边缘活动围道纹理分割方法[J].电子与信息学报.2007, 29(12):2819-2821浏览[11]Demanet L and Ying L X. Wave atoms and aparsity ofoscillatory patterns[J].Applied and Computational HarmonicAnalysis.2007, 23(3):368-387[12]Ma Jian-wei. Characterization of textural surfaces using waveatoms[J]. Applied Physics Letter, 2007, 90(5): 1-3.[13]Plonka G and Ma Jian-wei. Nonlinear regularizedreaction-diffusion filters for denoising of images withtextures[J].IEEE Transactions on Image Processing.2008,17(8):1283-1294[14]Villemoes L. Wavelet packets with uniform time-frequencylocation[J].Comptes-Rendus Mathematique.2002, 335(10):793-796[15]Rudin L I, Osher S J, and Fatemi E. Nonlinear Totalvariation based noise removal algorithms [J].Physica D.1992,60(1-4):259-268[16]Chambolle A and Lucier B J. Interpreting translationinvariantwavelet shrinkage as a new image smoothing scalespace[J].IEEE Transactions on Image Processing.2001, 10(7):993-1000[17]DeVore R A. Nonlinear approximation[J].Acta Numerica.1998, 7(1):51-150
  • 加载中
计量
  • 文章访问数:  3633
  • HTML全文浏览量:  116
  • PDF下载量:  819
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-05-15
  • 修回日期:  2009-03-30
  • 刊出日期:  2009-08-19

目录

    /

    返回文章
    返回