高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高斯比例混合模型的图像非下采样Contourlet域去噪

周汉飞 王孝通 徐晓刚

周汉飞, 王孝通, 徐晓刚. 基于高斯比例混合模型的图像非下采样Contourlet域去噪[J]. 电子与信息学报, 2009, 31(8): 1796-1800. doi: 10.3724/SP.J.1146.2008.00588
引用本文: 周汉飞, 王孝通, 徐晓刚. 基于高斯比例混合模型的图像非下采样Contourlet域去噪[J]. 电子与信息学报, 2009, 31(8): 1796-1800. doi: 10.3724/SP.J.1146.2008.00588
Zhou Han-fei, Wang Xiao-tong, Xu Xiao-gang. Image Denoising Using Gaussian Scale Mixture Model in the Nonsubsampled Contourlet Domain[J]. Journal of Electronics & Information Technology, 2009, 31(8): 1796-1800. doi: 10.3724/SP.J.1146.2008.00588
Citation: Zhou Han-fei, Wang Xiao-tong, Xu Xiao-gang. Image Denoising Using Gaussian Scale Mixture Model in the Nonsubsampled Contourlet Domain[J]. Journal of Electronics & Information Technology, 2009, 31(8): 1796-1800. doi: 10.3724/SP.J.1146.2008.00588

基于高斯比例混合模型的图像非下采样Contourlet域去噪

doi: 10.3724/SP.J.1146.2008.00588
基金项目: 

辽宁省自然科学基金(20062191)和浙江大学CADCG国家重点实验室开放基金资助课题

Image Denoising Using Gaussian Scale Mixture Model in the Nonsubsampled Contourlet Domain

  • 摘要: 为改善图像的去噪效果,该文提出了一种基于高斯比例混合模型的图像非下采样Contourlet域去噪算法。该算法首先建立非下采样Contourlet系数邻域的高斯比例混合模型,然后在模型基础上应用贝叶斯最小二乘法对系数进行估计,最后反变换得到恢复图像。算法结合了非下采样Contourlet变换对图像边缘的高效表示能力、非下采样变换的移不变性质以及GSM模型对非下采样Contourlet系数邻域相关性的概括能力。实验结果表明,该算法在视觉效果和峰值信噪比的改善上都取得了非常好的效果。
  • Dohono D L and Johnstone I M. Ideal spatial adaptation viawavelet shrinkage[J].Biometrika.1994, 81(3):425-455[2]Chang S G, Yu Bin, and Vetterli M. Adaptive waveletthresholding for image denoising and compression[J].IEEETransactions on Image Processing.2000, 9(9):1532-1546[3]Strela V, Portilla J, and Simonceil E P. Image denoising usinga local Gaussian scale mixture model in the waveletdomain[C]. Processings of SPIE Conference on WaveletApplications in Signal and Image Processing, San Diego, CA,2000, 4119: 363-371.[4]Portilla J, Strela V, and Wainwright M, et al.. Imagedenoisng using Gaussian Scale Mixtures in the WaveletDomain[J].IEEE Transactions on Image Processing.2003,12(11):1338-1351[5]田沛, 李庆周, 马平等. 一种基于小波变换的图像去噪新方法[J]. 中国图象图形学报, 2008, 13(3): 394-399.Tian Pei, Li Qing-zhou, and Ma Ping, et al.. A new methodbased on wavelet transform for image denoising[J]. Journal ofImages and Graphics, 2008, 13(3): 394-399.[6]Candes E J. Ridgelets: theory and application[D].[Ph.D.dissertation]. Department of Statistics, StandardUniversity, 1998.[7]Candes E J and Donoho D L. New tight frames of Curveletsand optimal representation of objects with smoothsingularities[R]. USA: Department of Statistics, StandardUniversity, 2002.[8]Starck J L, Candes E J, and Dohono D L. The Curvelettransform for image denoising[J].IEEE Transactions onImage Processing.2002, 11(6):670-684[9]Do M N. Directional multiresolution image representation[D].[Ph.D. dissertation]. School Comput. Commun. Sci. SwissFed. Inst. Technol. , Lausanne, Switzerland, 2001.[10]Do M N and Vetterli M. The Contourlet transform: Anefficient directional multiresolution image representation[J].IEEE Transactions on Image Processing.2005, 14(12):2091-2106[11]Starck J L, Donoho D L, and Candes E J. Very high qualityimage restoration by combining Wavelets and Curvelets[C].46th SPIE Annual Meeting, Conference on Signal and ImageProcessing, San Diego, USA, July 2001, 4478: 9-19.[12]金海燕, 焦李成, 刘芳. 基于Curvelet 域隐马尔科夫树模型的SAR 图像去噪[J]. 计算机学报, 2007, 30(3): 491-496.Jin Hai-yan, Jiao Li-cheng, and Liu Fang. SAR imagede-noising based on Curvelet domain hidden Markov treemodels[J]. Chinese Journal of Computers, 2007, 30(3):491-496.[13]Cunha A L, Zhou Jian-ping, and Do M N. Thenonsubsampled Contourlet transform: theory, design andapplication[J].IEEE Transactions on Image Processing.2006,15(10):3089-3101[14]Box G E P and Tiao C. Bayesian Inference in StatisticalAnalysis[M]. Reading, MA: Addison Wesley, 1992: 159-163.[15]Romberg J, Choi H, and Baraniuk P G. Bayesian waveletdomain image modeling using hidden Markov models[J].IEEE Transactions on Image Processing.2001, 10(7):1056-1068[16]Duncan D Y P and Do M N. Directional multiscale modelingof images using the Contourlet transform[J].IEEETransactions on Image Processing.2006, 15(6):1610-1620
  • 加载中
计量
  • 文章访问数:  3585
  • HTML全文浏览量:  113
  • PDF下载量:  1027
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-05-14
  • 修回日期:  2009-03-26
  • 刊出日期:  2009-08-19

目录

    /

    返回文章
    返回