高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于对偶树复数小波变换的邻域自适应的图像降噪

周登文 刘克勤

周登文, 刘克勤. 基于对偶树复数小波变换的邻域自适应的图像降噪[J]. 电子与信息学报, 2009, 31(5): 1197-1200. doi: 10.3724/SP.J.1146.2008.00469
引用本文: 周登文, 刘克勤. 基于对偶树复数小波变换的邻域自适应的图像降噪[J]. 电子与信息学报, 2009, 31(5): 1197-1200. doi: 10.3724/SP.J.1146.2008.00469
Zhou Deng-wen, Liu Ke-qin. Neighborhood Adaptive Image Denoising Using Dual-Tree Complex Wavelet Transform[J]. Journal of Electronics & Information Technology, 2009, 31(5): 1197-1200. doi: 10.3724/SP.J.1146.2008.00469
Citation: Zhou Deng-wen, Liu Ke-qin. Neighborhood Adaptive Image Denoising Using Dual-Tree Complex Wavelet Transform[J]. Journal of Electronics & Information Technology, 2009, 31(5): 1197-1200. doi: 10.3724/SP.J.1146.2008.00469

基于对偶树复数小波变换的邻域自适应的图像降噪

doi: 10.3724/SP.J.1146.2008.00469

Neighborhood Adaptive Image Denoising Using Dual-Tree Complex Wavelet Transform

  • 摘要: 该文提出一种新的基于对偶树复数小波变换的邻域自适应的图像降噪方法,它是现存的NeighShrink降噪方法的改进。该文运用Stein的无偏风险估计,在小波域每一个子带为NeighShrink方法确定一个最优的阈值和邻域窗口,并将NeighShrink方法从正交的小波变换推广到对偶树复数小波变换。实验结果证实,该文方法比当前基于小波的最具竞争力的图像降噪方法取得了更好的降噪效果。
  • Donoho D L and Johnstone I M. Ideal spatial adaptation viawavelet shrinkage [J].Biometrika.1994, 81(3):425-455[2]Cai T T and Silverman B W. Incorporating information onneighbouring coefficients into wavelet estimation[J]. Sankhya:The Indian Journal of Statistics, Series B, 2001, 63(2):127-148.[3]Chen G Y, Bui T D, and Krzy˙zak A. Image denoising withneighbour dependency and customized wavelet and threshold[J].Pattern Recognition.2005, 38(1):115-124[4]Coifman R R and Donoho D L. Translation invariantdenoising [C]. In Wavelets and Statistics, Springer LectureNotes in Statistics 103, San Diego, CA, USA, 1995: 125-150.[5]Selesnick I W, Baraniuk R G, and Kingsbury N G. The dualtreecomplex wavelet transform [J].IEEE Signal ProcessingMagazine.2005, 22(6):123-151[6]Balster E J, Zheng Y F, and Ewing R L. Feature-basedwavelet shrinkage algorithm for image denoising [J].IEEETrans. on Image Processing.2005, 14(12):2024-2039[7]Pizurica A and Philips W. Estimating probability of presenceof a signal of interest in multiresolution single- and multibandimage denoising [J].IEEE Trans. on Image Processing.2006,15(3):654-665[8]Blu T and Luisier F. The SURE-LET approach to imagedenoising [J].IEEE Trans. on Image Processing.2007, 16(11):2778-2786[9]Sendur L and Selesnick I W. Bivariate shrinkage with localvariance estimation [J].IEEE Signal Processing Letters.2002,9(12):438-441[10]Stein C. Estimation of the mean of a multivariate normaldistribution [J].Annuals of Statistics.1981, 9(6):1135-1151
  • 加载中
计量
  • 文章访问数:  3655
  • HTML全文浏览量:  107
  • PDF下载量:  777
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-04-22
  • 修回日期:  2008-09-19
  • 刊出日期:  2009-05-19

目录

    /

    返回文章
    返回