高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新的间歇混沌信号Poincar映像判别方法

谢涛 魏学业

谢涛, 魏学业. 一种新的间歇混沌信号Poincar映像判别方法[J]. 电子与信息学报, 2008, 30(9): 2166-2169. doi: 10.3724/SP.J.1146.2007.01467
引用本文: 谢涛, 魏学业. 一种新的间歇混沌信号Poincar映像判别方法[J]. 电子与信息学报, 2008, 30(9): 2166-2169. doi: 10.3724/SP.J.1146.2007.01467
Xie Tao, Wei Xue-Ye. A New Method of Intermittent Chaotic Signal Identification Based on Poincar Map[J]. Journal of Electronics & Information Technology, 2008, 30(9): 2166-2169. doi: 10.3724/SP.J.1146.2007.01467
Citation: Xie Tao, Wei Xue-Ye. A New Method of Intermittent Chaotic Signal Identification Based on Poincar Map[J]. Journal of Electronics & Information Technology, 2008, 30(9): 2166-2169. doi: 10.3724/SP.J.1146.2007.01467

一种新的间歇混沌信号Poincar映像判别方法

doi: 10.3724/SP.J.1146.2007.01467

A New Method of Intermittent Chaotic Signal Identification Based on Poincar Map

  • 摘要: 针对混沌振子微弱信号检测中间歇混沌信号的判别问题,该文分析了噪声对Poincar截面的扰动影响,提出一种基于Poincar映像的新方法,并通过数值仿真对该方法进行了验证,结果表明在强噪声作用下,即使相空间分量输出波形难以进行判别,该方法仍然能够实现间歇混沌发生频率的有效判别,且抑制了混沌振子自发的短时间周期振荡现象,实现了强噪声背景下微弱周期信号的快速有效检测。
  • [1] Brown R, Chua L, and Popp B. Is sensitive dependence oninitial conditions natures sensory device? [J].Int. J. Bifurc.Chaos.1992, 2(1):193-199 [2] Wang Guan-yu, Chen Da-jun, and Lin Jian-ya, et al.. Theapplication of chaotic oscillators to weak signal detection.IEEE Trans. on Industrial Electronics [J]. 1999, 46(2):440-444. [3] 李月, 杨宝俊, 石要武, 等. 纳伏级正弦信号的混沌检测方法研究. 通信学报, 2003, 24(4): 25-30.Li Yue, Yang Bao-jun, and Shi Yao-wu, et al.. Study onchaotic detection method of nV-level sine signal. Journal ofChina Institute of Communications, 2003, 24(4): 25-30. [4] 李月, 路鹏, 杨宝俊, 等. 用一类特定的双耦合Duffing振子系统检测强噪声背景中的周期信号[J]. 物理学报, 2006, 55(4):1672-1677.Li Yue, Lu Peng, and Yang Bao-jun, et al.. Applying a specialkind of two coupled Duffing oscillator system to detectperiodic signals under the background of strong colored noise.Atca Physica Sinica, 2006, 55(4): 1672-1677. [5] 赵华, 尹成群, 尚秋峰, 等. 双振子差分混沌特性判断方法[J].中国电机工程学报, 2006, 26(23): 32-35.Zhao Hua, Yin Cheng-qun, and Shang Qiu-feng, et al.. Twooscillator-difference-chaotic-identification method [J]. Proceedingof the CSEE, 2006, 26(23): 32-35. [6] 刘丁, 任海鹏, 李虎明, 等. 基于Lyapunov指数的弱周期信号检测[J]. 仪器仪表学报, 2005, 26(12): 1215-1243.Liu Ding, Ren Hai-peng, and Li Hu-ming. Weak signaldetection based on Lyapunov exponents [J]. Chinese Journalof Scientific Instrumeng, 2005, 26(12): 1215-1243. [7] Kao Yao Huang, Huang Jeun Chyuan, and Gou Yi Shun.Persistent properties of crisis in a Duffing oscillator [J].Physical Review A.1987, 35(12):5228-5232 [8] Wolf A, Swift J B, and Swinney H L, et al.. DeterminingLyapunov exponents from a time series [J]. Physica, 1985,16D: 285-317. [9] 王冠宇, 陈大军, 林建亚, 等. Duffing振子微弱信号检测方法的统计特性研究[J]. 电子学报, 1998, 26(10): 38-44.Wang Guan-yu, Chen Da-jun, and Lin Jian-ya, et al.. Thestatistical characteristic of weak signal detection based onDuffing oscillator. Atca Electronica Sinica, 1998, 26(10):38-44. [10] Serletis A, Shahmoradi A, and Serletis D. Effect of noise onthe bifurcation behavior of nonlinear dynamical systems [J].Chaos, Solitons and Fractals.2007, 33(3):914-921
  • 加载中
计量
  • 文章访问数:  3522
  • HTML全文浏览量:  94
  • PDF下载量:  846
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-09-13
  • 修回日期:  2008-01-21
  • 刊出日期:  2008-09-19

目录

    /

    返回文章
    返回