高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相干分布式信源二维波达方向估计算法

韩英华 汪晋宽 宋昕

韩英华, 汪晋宽, 宋昕. 相干分布式信源二维波达方向估计算法[J]. 电子与信息学报, 2009, 31(2): 323-326. doi: 10.3724/SP.J.1146.2007.01300
引用本文: 韩英华, 汪晋宽, 宋昕. 相干分布式信源二维波达方向估计算法[J]. 电子与信息学报, 2009, 31(2): 323-326. doi: 10.3724/SP.J.1146.2007.01300
Han Ying-hua, Wang Jin-kuan, Song Xin. 2D DOA Estimation Algorithm for Coherently Distributed Source[J]. Journal of Electronics & Information Technology, 2009, 31(2): 323-326. doi: 10.3724/SP.J.1146.2007.01300
Citation: Han Ying-hua, Wang Jin-kuan, Song Xin. 2D DOA Estimation Algorithm for Coherently Distributed Source[J]. Journal of Electronics & Information Technology, 2009, 31(2): 323-326. doi: 10.3724/SP.J.1146.2007.01300

相干分布式信源二维波达方向估计算法

doi: 10.3724/SP.J.1146.2007.01300

2D DOA Estimation Algorithm for Coherently Distributed Source

  • 摘要: 针对相干分布式信源二维波达方向估计算法多采用谱峰搜索导致计算复杂度较大的问题,该文提出了一种二维波达方向分离估计算法。该算法通过将积分形式的相干分布式信源方向向量化简为点信源方向向量与实向量的Schur-Hadamard积,对子阵X接收的数据构造二阶统计量;利用传播因子最小二乘估计子阵X与Z,X与W之间的旋转不变矩阵。由二阶统计量与旋转不变矩阵分别估计方位角与仰角,对于接近90的仰角也可给出有效的估计。与传统子空间算法相比,无需任何谱峰搜索和特征值分解,降低了计算复杂度。仿真实验表明了所提算法的有效性。
  • Asztely D and Ottersten B. The effects of local scattering ondirection of arrival estimation with MUSIC and ESPRIT.Proceedings of International Conference on Acoustics, Speechand Signal Processing 1998, Seattle, Washington, 1998:3333-3336.[2]Shahbazpanahi S and Valaee S. A new approach to spatialpower spectral density estimation for multiple incoherentlydistributed sources. Proceedings of International Conferenceon Acoustics, Speech and Signal Processing 2007, Honolulu,hawaii, 2007: 1133-1136.[3]Christou C T and Jacyna G M. Simulation of the beamresponse of distributed signals[J].IEEE Trans. on SignalProcessing.2005, 53(8):3023-3031[4]Hassanien A, Shahbazpanahi S, and Gershman A B. Ageneralized Capon estimator for localization of multiplespread sources[J].IEEE Trans. on Signal Processing.2004,52(1):280-283[5]Shahbazpanahi S, Valaee S, and Bastani M H. Distributedsource localization using ESPRIT algorithm[J].IEEE Trans. onSignal Processing.2001, 49(10):2169-2178[6]Zoubir A, Wang Y, and Charge P. Spatially distributedsources localization with a subspace based estimator withouteigendecomposition. Proceedings of International Conferenceon Acoustics, Speech and Signal Processing 2007, Honolulu,hawaii, 2007: 1085-1088.[7]Shahbazpanahi S, Valaee S, and Gershman A B. A covariancefitting approach to parametric localization of multipleincoherently distributed Sources[J].IEEE Trans. on SignalProcessing.2004, 52(3):592-600[8]Lee J, Song L, Kwon H, and Lee S R. Low-complexityestimation of 2D DOA for coherently distributed sources[J].Signal Processing.2003, 83(8):1789-1802[9]Gradshteyn I S and Ryzhik I M. Table of Integrals, Series,and Products(7th Edition). Orlando: Academic Press, 2007:438.[10]Marcos S, Marsal A, and Benidir M. The propagator methodfor source bearing estimation[J].Signal Processing.1995, 42(2):121-138
  • 加载中
计量
  • 文章访问数:  3155
  • HTML全文浏览量:  131
  • PDF下载量:  838
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-08-09
  • 修回日期:  2008-01-10
  • 刊出日期:  2009-02-19

目录

    /

    返回文章
    返回