高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图像局部弹性变换中径向基函数紧支撑集的选取

杨烜 裴继红 张智雄

杨烜, 裴继红, 张智雄. 图像局部弹性变换中径向基函数紧支撑集的选取[J]. 电子与信息学报, 2008, 30(12): 2898-2901. doi: 10.3724/SP.J.1146.2007.00951
引用本文: 杨烜, 裴继红, 张智雄. 图像局部弹性变换中径向基函数紧支撑集的选取[J]. 电子与信息学报, 2008, 30(12): 2898-2901. doi: 10.3724/SP.J.1146.2007.00951
Yang Hui, Pei Ji-Hong, Zhang Zhi-Xiong. Compact Support Analysis of Radial Basis Function in Image Local Elastic Transformation[J]. Journal of Electronics & Information Technology, 2008, 30(12): 2898-2901. doi: 10.3724/SP.J.1146.2007.00951
Citation: Yang Hui, Pei Ji-Hong, Zhang Zhi-Xiong. Compact Support Analysis of Radial Basis Function in Image Local Elastic Transformation[J]. Journal of Electronics & Information Technology, 2008, 30(12): 2898-2901. doi: 10.3724/SP.J.1146.2007.00951

图像局部弹性变换中径向基函数紧支撑集的选取

doi: 10.3724/SP.J.1146.2007.00951
基金项目: 

国家自然科学基金(60572101)资助课题

Compact Support Analysis of Radial Basis Function in Image Local Elastic Transformation

  • 摘要: 弹性图像配准中常常需要采用紧支撑的径向基函数来实现局部弹性变换,径向基函数的支撑集大小决定了图像局部扭曲的范围,而如何选取基函数的支撑集大小是一个一直没有解决的问题。该文利用弹性变换模型,针对Wendland基函数,从理论上分析了双标志点空间位置与基函数支撑集的关系,并对任意标志点集合通过构造Delaunay三角剖分来确定基函数支撑集大小,文中给出了径向基函数支撑集的选取原则。人工网格图像和医学图像的局部弹性变换实验验证了该文的结论。
  • [1] Bookstein F L. Principal warps: Thin-plate splines and thedecomposition of deformations[J].IEEE Trans. on. PatternAnalysis and Machine Intelligence.1989, 11(6):567-585 [2] Arad N and Reisfeld D. Image warping using few anchorpoints and radial functions[J].Computer Graphics Forum.1995,14(1):35-46 [3] Fornefett M, Rohr K, and Stiehl H S. Radial basis functionswith compact support for elastic registration of medicalimages[J].Image Vision Comput.2001, 19:87-96 [4] Fornefett M, Rohr K, and Stiehl H S. Elastic registration ofmedical images using radial basis functions with compactsupport. CVPR99, Colorada, 1999: 402-407. [5] Lie Wen-Nung and Chuang Cheng-Hung. Contour-basedimage registration with local deformations. OpticalEngineering, 2003, 42(5): 1405-1416. [6] Donato1 G and Belongie S. Approximate thin plate splinemappings. ECCV, Copenhagen, 2002: 531-542. [7] Wendland H. Piecewise polynomial, positive definite andcompactly supported radial functions of minimal degree[J].Adv.in Comp. Math.1995, 4:389-396 [8] Buhmann M D. A new class of radial basis functions withcompact support[J].Math. Comput.2000, 70:307-318 [9] Rohr K, Stiehl H S, and Sprengel R, et al.. Landmark-basedelastic registration using approximating thin-plate splines[J].IEEE Trans. on Med. Imaging.2001, 20(6):526-534 [10] Li J, Yang X, and Yu J P. Local warp algorithm in imageelastic registration. FLCI2005, Shenzhen, 2005: 693-698.
  • 加载中
计量
  • 文章访问数:  3734
  • HTML全文浏览量:  97
  • PDF下载量:  1351
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-06-15
  • 修回日期:  2007-11-08
  • 刊出日期:  2008-12-19

目录

    /

    返回文章
    返回