高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维小波收缩与各向异性扩散等价性框架及在图像去噪中的应用

朱景福 黄凤岗

朱景福, 黄凤岗. 二维小波收缩与各向异性扩散等价性框架及在图像去噪中的应用[J]. 电子与信息学报, 2008, 30(3): 524-528. doi: 10.3724/SP.J.1146.2007.00888
引用本文: 朱景福, 黄凤岗. 二维小波收缩与各向异性扩散等价性框架及在图像去噪中的应用[J]. 电子与信息学报, 2008, 30(3): 524-528. doi: 10.3724/SP.J.1146.2007.00888
Zhu Jing-fu, Huang Feng-gang. The Equivalence Framework and the Application to Image Denoising of Two Dimensional Wavelet Shrinkage and Anisotropic Diffusivity[J]. Journal of Electronics & Information Technology, 2008, 30(3): 524-528. doi: 10.3724/SP.J.1146.2007.00888
Citation: Zhu Jing-fu, Huang Feng-gang. The Equivalence Framework and the Application to Image Denoising of Two Dimensional Wavelet Shrinkage and Anisotropic Diffusivity[J]. Journal of Electronics & Information Technology, 2008, 30(3): 524-528. doi: 10.3724/SP.J.1146.2007.00888

二维小波收缩与各向异性扩散等价性框架及在图像去噪中的应用

doi: 10.3724/SP.J.1146.2007.00888

The Equivalence Framework and the Application to Image Denoising of Two Dimensional Wavelet Shrinkage and Anisotropic Diffusivity

  • 摘要: 图像去噪是图像处理中的一种重要技术。小波收缩根据噪声的小波系数幅值较小的特征通过收缩达到去噪目的。各向异性扩散在尽可能保持图像特征的同时,根据梯度方向及幅值去噪。该文首先证明二维小波收缩与各向异性扩散的等价性框架,对等价性给予验证,进而根据等价性提出综合利用两种方法优势的各向异性小波收缩去噪算法。对比实验结果表明,此算法综合利用了小波收缩与各向异性扩散的优势,去噪效果更加理想。
  • Mallat S and Hwang W L. Singularity detection andprocessing with wavelets[J].IEEE Trans. on Inform. Theory.1992, 38(2):617-643[2]Xu Y S, Weaver J B, and Healy D M, et al.. Wavelettransform domain filters: A spatially selective noise filtrationtechnique[J].IEEE Trans. on Image Proc.1994, 3(6):747-758[3]Donoho D L. Denoising by soft-thresholding[J].IEEE Trans.on Inf Theory.1995, 41(3):613-627[4]Coifman R R and Donoho D L. Translation invariant denoising[C]. In: Wavelets and Statistics: A Antoniadis, GOppenheim, Lecture Notes in Statistics 103. New York:Springer-Verlag, 1995: 125-150.[5]潘泉,孟晋丽,张磊等. 小波滤波方法及应用[J].电子与信息学报.2007, 29(1):236-242浏览[6]Perona P and Malik J. Scale space and edge detection usinganisotropic diffusion[J].IEEE Trans. on Pattern Analysisand Machine Intelligence.1990, 12(7):629-639[7]Charbonnier P, Blanc-Feraud L, and Aubert G, et al.. Twodeterministic half-quadratic regularization algorithms forcomputed imaging[C]. Proceedings of the IEEE ICIP, Austin,TX, November 1994, Vol. 2: 168-172.[8]Andreu F, Ballester C, and Caselles V, et al.. Minimizingtotal variation flow[J]. Differential and Integral Equations,2001, 14(3): 321-360.[9]Shen J. A note on wavelets and diffusions[J].Journal ofComputational Analysis and Application.2003, 5(1):147-158[10]Steidl Gabriele, Weickert Joachim, and Brox Thomas, et al..On the equivalence of soft wavelet shrinkage, total variationdiffusion, total variation regularization, and SIDEs[J].SIAM J. Numerical Analysis.2004, 42(2):686-713[11]吴亚东, 孙世新. 基于二维小波收缩与非线性扩散的混合图像去噪算法[J]. 电子学报, 2006, 34(1): 163-166.Wu Ya-dong and Sun Shi-xin. A new hybrid image de-noisingalgorithm based on 2D wavelet shrinkage and nonlineardiffusion[J]. Acta Electronica Sinica, 2006, 34(1): 163-166.[12]李一亮, 王卫卫. 基于小波维纳滤波和各向异性扩散的图像去噪[J]. 计算机工程与应用, 2006, 42(29): 52-54.Li Yi-liang and Wang Wei-wei. Image denoising based onwiener filtering in wavelet domain and anisotropic diffusion[J].Computer Engineering and Application, 2006, 42(29): 52-54.[13]姜东焕, 冯象初, 宋国乡. 基于非线性小波阈值的各向异性扩散方程[J]. 电子学报, 2006, 34(1): 170-172.Jiang Dong-huan, Feng Xiang-chu, and Song Guo-xiang. Ananisotropic diffusion equation based on nonlinear waveletshrinkage. Acta Electronica Sinica, 2006, 34(1): 170-172.[14]Liu Feng. Diffusion filtering in image processing based onwavelet transform[J].Science in China Series F: InformationSciences.2006, 49(4):494-503[15]Dohono D L and Johnstone I M. Ideal spatial adaptation bywavelet shrinkage[J].Biometrika.1994, 81(3):425-455
  • 加载中
计量
  • 文章访问数:  3445
  • HTML全文浏览量:  83
  • PDF下载量:  939
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-06-05
  • 修回日期:  2007-10-16
  • 刊出日期:  2008-03-19

目录

    /

    返回文章
    返回