高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性系统中状态和参数联合估计的双重粒子滤波方法

侯代文 殷福亮

侯代文, 殷福亮. 非线性系统中状态和参数联合估计的双重粒子滤波方法[J]. 电子与信息学报, 2008, 30(9): 2128-2133. doi: 10.3724/SP.J.1146.2007.00273
引用本文: 侯代文, 殷福亮. 非线性系统中状态和参数联合估计的双重粒子滤波方法[J]. 电子与信息学报, 2008, 30(9): 2128-2133. doi: 10.3724/SP.J.1146.2007.00273
Hou Dai-Wen, Yin Fu-Liang. A Dual Particle Filter for State and Parameter Estimation in Nonlinear System[J]. Journal of Electronics & Information Technology, 2008, 30(9): 2128-2133. doi: 10.3724/SP.J.1146.2007.00273
Citation: Hou Dai-Wen, Yin Fu-Liang. A Dual Particle Filter for State and Parameter Estimation in Nonlinear System[J]. Journal of Electronics & Information Technology, 2008, 30(9): 2128-2133. doi: 10.3724/SP.J.1146.2007.00273

非线性系统中状态和参数联合估计的双重粒子滤波方法

doi: 10.3724/SP.J.1146.2007.00273
基金项目: 

国家自然科学基金(60772161,60372082)和教育部跨世纪优秀人才基金资助课题

A Dual Particle Filter for State and Parameter Estimation in Nonlinear System

  • 摘要: 该文提出了一种双重粒子滤波方法,对存在未知参数的非线性系统进行状态和参数联合估计。该方法采用基于充分统计量的粒子滤波技术,避免了重采样过程中的粒子枯竭现象;采用贝塔分布拟合系统参数的后验分布,不仅充分利用了先验信息,而且避免了对高斯分布拖尾部分的采样,提高了粒子的采样效率。仿真实验结果表明,该方法提高了非线性系统中状态和参数的估计精度,降低了滤波器对初始误差的敏感性。
  • [1] Kalman R. A new approach to linear filtering and predictionproblem. Trans. of the ASME-Journal of Basic Engineering,1960, 82(D): 34-45. [2] Jazwinski A H. Stochastic Processes and Filtering Theory.New York: Academic press, 1970: 281-286. [3] Dempster A P, Laird N M, and Rubin D B. Maximumlikelihood from incomplete data via the EM algorithm.Journal of the Royal Statistical Society, 1977, Series B, 39(1):1-38. [4] Goodwin G C and Agero J C. Approximate EM algorithmsfor parameter and state estimation in nonlinear stochasticmodels. Proceedings of the 44th IEEE Conference onDecision and Control, and the European Control Conference2005. Seville, Spain, 2005: 368-373. [5] Lange K A. Gradient algorithm locally equivalent to the EMalgorithm. Journal of the Royal Statistical Society, 1995,Series B, 59(2): 425-437. [6] Berzuini C and Best N G, et al.. Dynamic conditionalindependence models and Markov chain Monte Carlomethods[J].Journal of the American Statistical Association.1997, 92(440):1403-1441 [7] Gordon N, Salmond D, and Smith A F M. Novel approach tononlinear and non-Gaussian Bayesian state estimation. IEEProceedings-F, 1993, 140(2): 107-113. [8] Liu J and West M. Combined parameter and state estimationin simulation-based filtering. in Sequential Monte Carlo inPractice, A. Doucet, N. de Freitas, and N. Gordon, Eds. NewYork: Springer-Verlag, 2001: 197-223. [9] Storvik G. Particle filters in state space models with thepresence of unknown static parameters[J].IEEE Trans. onSignal Processing.2002, 50(2):281-289 [10] Wan E A and Nelson A T. Dual extended Kalman filtermethods. in Kalman Filtering and Neural Networks, S.Haykin, Eds. New York: John Wiley and Sons, Inc., 2001:123-173. [11] Arulampalam M S and Maskell S, et al.. A tutorial on particlefilters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Trans. on Signal Processing.2002, 50(2):174-188 [12] Minvielie P and Marrs A D, et al.. Joint target tracking andidentification: part I: sequential Monte Carlo model-basedapproaches. 8th International Conference on InformationFusion. Philadelphia, USA: FUSION'2005: 25-29. [13] Ristic B and Farina A, et al.. Performance bounds andcomparison of nonlinear filters for tracking a ballistic objecton re-entry[J].IEE Proceedings on Radar, Sonar andNavigation.2003, 150(2):65-70 [14] 帕普里斯A, 佩莱S. 保铮等译. 概率、随机变量与随机过程.西安:西安交通大学出版社,2004: 70-72. [15] Kay S M. 罗鹏飞,张文明等译. 统计信号处理基础估计与检测理论. 北京:电子工业出版社,2006: 85-102. [16] Anderson B and Moore J. Optimal Filtering. EnglewoodCliffs, NJ: Prentice-Hall. 1979: 193-222. [17] Kitagawa G. A nonlinear smoothing method for time seriesanalysis. Statistica Sinica, 1991, 1(2): 371-388. [18] Chen E J. Simulation-based estimation of quantiles.Proceedings of the 31st conference on Winter simulation,Arizona, United States, 1999: 428-434. [19] Athans R and Berolini A. Suboptimal state estimation forcontinuous-time nonlinear systems from discrete noisymeasurements[J].IEEE Trans. on Automatic Control.1968,13(5):504-514 [20] Diaz-Garcia J A and Jaimez R G. Noncentral matrix variatebeta distribution. available from http: // www.cimat.mx/reportes/enlinea/I-06-06.pdf. 2006.12. 24. [21] Wagle B. Multivariate beta distribution and a test formultivariate normality. Journal of the Royal StatisticalSociety, 1968, Series B, 30(3): 511-516.
  • 加载中
计量
  • 文章访问数:  3965
  • HTML全文浏览量:  106
  • PDF下载量:  1272
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-02-13
  • 修回日期:  2007-09-28
  • 刊出日期:  2008-09-19

目录

    /

    返回文章
    返回