高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雷达系统杂波自由度研究

伍勇 汤俊 彭应宁

伍勇, 汤俊, 彭应宁. 雷达系统杂波自由度研究[J]. 电子与信息学报, 2008, 30(5): 1032-1036. doi: 10.3724/SP.J.1146.2007.00191
引用本文: 伍勇, 汤俊, 彭应宁. 雷达系统杂波自由度研究[J]. 电子与信息学报, 2008, 30(5): 1032-1036. doi: 10.3724/SP.J.1146.2007.00191
Wu Yong, Tang Jun, Peng Ying-ning. On Clutter Degrees of Freedom of the Radar System[J]. Journal of Electronics & Information Technology, 2008, 30(5): 1032-1036. doi: 10.3724/SP.J.1146.2007.00191
Citation: Wu Yong, Tang Jun, Peng Ying-ning. On Clutter Degrees of Freedom of the Radar System[J]. Journal of Electronics & Information Technology, 2008, 30(5): 1032-1036. doi: 10.3724/SP.J.1146.2007.00191

雷达系统杂波自由度研究

doi: 10.3724/SP.J.1146.2007.00191
基金项目: 

国家自然科学基金(60602048)和清华大学基础研究基金(JCqn2005019)资助课题

On Clutter Degrees of Freedom of the Radar System

  • 摘要: 为了分析各种非均匀、非线性、非密集阵列雷达的杂波抑制性能,该文基于带限信号自由度理论提出了一种适用于多种阵列构型的杂波自由度估计方法。该方法能有效估计杂波大特征值的个数,并揭示了杂波自由度与系统参数、杂波场景的内在联系。研究表明,为了提高稀疏阵雷达的杂波抑制性能,需增加系统自由度来减少稀疏采样区。最后通过计算机仿真验证了该文提出的估计方法的有效性。
  • Guerci J R, Goldstein J S, and Reed I S. Optimal andadaptive reduced-rank STAP[J].IEEE Trans. on Aerospace andElectronic Systems.2000, 36(2):647-663[2]王永良, 彭应宁. 空时自适应信号处理. 北京: 清华大学出版社, 2000: 126-128.Wang Yong-liang and Peng Ying-ning. Space-Time AdaptiveProcessing. Beijing: Tsinghua University Press, 2000:126-128.[3]Guerci J R. Space-Time Adaptive Processing for Radar.London: Artech house, 2003: 61-103.[4]Zatman M. Circular array STAP[J].IEEE Trans. on Aerospaceand Electronic Systems.2000, 36(2):510-517[5]Leatherwood D A and Melvin W L. Configuring a sparseaperture antenna for spaceborne MTI radar. Proceedings ofIEEE Radar Conference 2003, Alabama, USA, May 2003:130-146.[6]Goodman N A and Stiles J M. Resolution and syntheticaperture characterization of sparse radar arrays[J].IEEE Trans.on Aerospace and Electronic Systems.2003, 39(3):921-935[7]Fertig L B. Estimation of space-time clutter rank forsubarrayed data. Conference Record of the Thirty-EighthAsilomar Conference on Signals, Systems and Computers,CA, USA, Nov. 2004: 289-292.[8]Slepian D and Pollak H O. Prolate spheroidal wave functions,Fourier analysis and uncertainty-I. Bell System TechnicalJournal, 1961, 40(1): 43-63.[9]Slepian D. Prolate spheroidal wave functions, Fourier analysisand uncertainty-V: the discrete case. Bell System TechnicalJournal, 1978, 57(5): 1371-1429.[10]Landau H J and Pollak H O. Prolate spheroidal wavefunctions, Fourier analysis and uncertainty-III: the dimensionof the space of essentially time- and band-limited signals. BellSystem Technical Journal, 1964, 41(7): 1295-1336.[11]Wu Yong, Tang Jun, and Peng Yingning. Clutter rank ofsparse linear array radar. Proceedings of 2006 CIEInternational Conference on Radar, Shanghai, China, Oct.2006: 1149-1152.[12]Wu Yong, Tang Jun, and Peng Yingning. Clutter rank ofmulti-dimensional sparse array radar. Proceedings of 2007IEEE Radar Conference, Waltham, USA, April 2007:463-468.
  • 加载中
计量
  • 文章访问数:  3747
  • HTML全文浏览量:  94
  • PDF下载量:  907
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-01-30
  • 修回日期:  2007-09-11
  • 刊出日期:  2008-05-19

目录

    /

    返回文章
    返回