高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Shilnikov定理构造分段线性混沌系统

陈希有 李冠林

陈希有, 李冠林. 基于Shilnikov定理构造分段线性混沌系统[J]. 电子与信息学报, 2008, 30(8): 1932-1935. doi: 10.3724/SP.J.1146.2007.00130
引用本文: 陈希有, 李冠林. 基于Shilnikov定理构造分段线性混沌系统[J]. 电子与信息学报, 2008, 30(8): 1932-1935. doi: 10.3724/SP.J.1146.2007.00130
Chen Xi-you, Li Guan-lin. Synthesize Piecewise Linear Chaotic System with Shilnikov Theorem[J]. Journal of Electronics & Information Technology, 2008, 30(8): 1932-1935. doi: 10.3724/SP.J.1146.2007.00130
Citation: Chen Xi-you, Li Guan-lin. Synthesize Piecewise Linear Chaotic System with Shilnikov Theorem[J]. Journal of Electronics & Information Technology, 2008, 30(8): 1932-1935. doi: 10.3724/SP.J.1146.2007.00130

基于Shilnikov定理构造分段线性混沌系统

doi: 10.3724/SP.J.1146.2007.00130

Synthesize Piecewise Linear Chaotic System with Shilnikov Theorem

  • 摘要: 该文基于异宿轨道Shilnikov定理,构造了一类分段线性混沌系统。这类混沌系统具有至少两个平衡点,且在各个平衡点处具有相同的雅戈比矩阵。通过改变系统的平衡点及相应转换平面,可以得到这类混沌系统的其他形式。理论研究和实验证明了该方法的有效性。
  • Rasler O E. An equation for continuous chaos. PhysicsLetters A, 1976, 57(5): 397-398.[2]Chua L O and Lin G N. Canonical realization of Chua抯circuit family[J].IEEE Trans. on Circuits and Systems.1990,37(7):885-902[3]Chen G and Ueta T. Yet another chaotic attractor[J].International Journal of Bifurcation and Chaos.1999, 9(7):1465-1466[4]Elwakil A S and Kennedy M P. A system for chaos generationand its implementation in monolithic form. IEEEInternational Symposium on Circuits and Systems [C],Geneva, 2000: 217-220.[5]Yalcin M E, Ozoguz S, and Suykens J A K, et al.. n-scrollchaos generators: a simple circuit model[J].Electronics Letters.2001, 37(3):147-148[6]Wang X F and Chen G R. Generating topologically conjugatechaotic systems via feedback control[J].IEEE Trans. onCircuits and Systems.2003, 50(6):812-817[7]Takahashi Y and Saito T. A simple Hyperchaos generatorbased on impulsive switching[J].IEEE Trans. on Circuits andSystems.2004, 51(9):468-472[8]Wang X F and Chen G R. Chaotification of continuous-timesystems via time-delay feedback. International Conference onControl of Oscillations and Chaos[C], St.Petersburg, 2000, 2:213-216.[9]Chua L O, Komuro M, and Matsumoto T. The double scrollfamily. IEEE Trans. on Circuits and Systems, 1986, 33(11):1073-1118.[10]Li Z, Chen G R, and Halang W A. Homoclinic andheteroclinic orbits in a modified Lorenz system. InformationSciences, 2004, 165(3): 235-245.[11]Zhou Tinshou, Chen Guanrong, and Yang Qigui.Constructing a new chaotic system based on the Shilnikovcriterion[J].Chaos Solitons Fractals.2004, 19(9):985-993[12]Silva C P. Shilnikovs theorem-A tutorial. IEEE Trans. onCircuits and Systems, 1993, 40(10): 675-682.
  • 加载中
计量
  • 文章访问数:  3392
  • HTML全文浏览量:  127
  • PDF下载量:  1026
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-01-23
  • 修回日期:  2007-05-21
  • 刊出日期:  2008-08-19

目录

    /

    返回文章
    返回