高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Sugeno补的广义模糊熵阈值分割方法

范九伦 赵凤

范九伦, 赵凤. 基于Sugeno补的广义模糊熵阈值分割方法[J]. 电子与信息学报, 2008, 30(8): 1865-1868. doi: 10.3724/SP.J.1146.2007.00103
引用本文: 范九伦, 赵凤. 基于Sugeno补的广义模糊熵阈值分割方法[J]. 电子与信息学报, 2008, 30(8): 1865-1868. doi: 10.3724/SP.J.1146.2007.00103
Fan Jiu-lun, Zhao Feng. A Generalized Fuzzy Entropy Thresholding Segmentation Method Based on the Sugeno Complement Operator[J]. Journal of Electronics & Information Technology, 2008, 30(8): 1865-1868. doi: 10.3724/SP.J.1146.2007.00103
Citation: Fan Jiu-lun, Zhao Feng. A Generalized Fuzzy Entropy Thresholding Segmentation Method Based on the Sugeno Complement Operator[J]. Journal of Electronics & Information Technology, 2008, 30(8): 1865-1868. doi: 10.3724/SP.J.1146.2007.00103

基于Sugeno补的广义模糊熵阈值分割方法

doi: 10.3724/SP.J.1146.2007.00103
基金项目: 

国家自然科学基金(60572133)资助课题

A Generalized Fuzzy Entropy Thresholding Segmentation Method Based on the Sugeno Complement Operator

  • 摘要: 鉴于传统的基于模糊熵的图像阈值分割方法对于光照不均匀图像的分割结果很不理想,该文提出了基于Sugeno补的广义模糊熵图像阈值分割方法。首先按照Sugeno补函数不动点的变化,对一幅图像产生9个阈值,然后利用图像分割质量评价指标对这9个阈值进行评价,最后选择使得评价指标最大的阈值作为最优的阈值。与传统的模糊熵阈值分割方法相比,新方法增加了选择更好的分割结果的机会,对于光照不均匀的图像能够获得比传统模糊熵方法更好的分割效果。
  • 范九伦. 模糊熵理论 [M]. 第一版,西安: 西北大学出版社,1999: 9-14.Fan J L. Fuzzy entropy theory [M]. First Edition, Xian:Northwest University Press, 1999: 9-14.[2]De Luca A and Termini S. A definition of a nonprobabilisticentropy in the setting of fuzzy set theory [J].Information andControl.1972, 20(4):301-312[3]Zadeh L A. Fuzzy sets [J].Information and Control.1965,8(3):338-353[4]Cheng H D, Chen Y H, and Sun Y. A novel fuzzy entropyapproach to image enhancement and thresholding [J]. SignalProcessing, 1999, 75(3): 277-301.[5]Huang L K and Wang M J. Image thresholding by minimizingthe measures of fuzziness [J].Pattern Recognition.1995, 28(1):41-51[6]Li X Q, Zhao Z W, and Cheng H D. Fuzzy entropy thresholdapproach to breast cancer detection [J].Information Sciences.1995, 4(1):49-56[7]Pal S K. A note on the quantitative measure of imageenhancement through fuzziness [J].IEEE Trans. on PatternAnalysis and Machine Intelligence.1982, 4(2):204-208[8]Zenzo S D, Cinque L, and Levialdi S. Image thresholdingusing fuzzy entropies [J].IEEE Trans. on Systems, Man andCybernetics-Part B: Cybernetics.1998, 28(1):15-23[9]Lowen R. On fuzzy complements [J].Information Sciences.1978, 14(2):107-113[10]Yager R R. On the measures of fuzziness and negation, PartII: Lattices [J].Information and Control.1980, 44(3):236-260[11]Sugeno M. Fuzzy measures and fuzzy integrals: A survey [A].Fuzzy Automata and Decision Processes [C]. New York:North-Holland, 1977: 89-102.[12]Li H and Yang H S. Fast and reliable image enhancementusing fuzzy relaxation technique [J].IEEE Trans. on Systems,Man and Cybernetics.1989, 19(5):1276-1281[13]Cheng H D and Chen J R. Automatically determine themembership function based on the maximum entropyprinciple [J].Information Sciences.1997, 96(3-4):163-182[14]Sahoo P K, Soltani S, and Wong A K C, et al.. A survey ofthresholding techniques [J].Computer Vision, Graphics andImage Processing.1988, 41(2):233-260
  • 加载中
计量
  • 文章访问数:  3460
  • HTML全文浏览量:  131
  • PDF下载量:  950
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-01-15
  • 修回日期:  2007-09-28
  • 刊出日期:  2008-08-19

目录

    /

    返回文章
    返回