一种新的含噪混沌信号降噪算法
doi: 10.3724/SP.J.1146.2007.00043
A Novel Denoising Algorithm for Contaminated Chaotic Signals
-
摘要: 该文针对低信噪比、非高斯加性噪声和混沌动力学系统参数未知的含噪混沌信号降噪问题,提出了一种基于粒子滤波(Particle Filtering, PF)的降噪新算法。该算法将混沌信号和动力学系统中的未知参数作为一个多维状态矢量,利用PF方法递推计算多维状态矢量的联合后验概率分布,进而实现了对混沌信号的最优估计。对于混沌信号轨道分离过快所导致的退化问题,提出了有效的解决方法,并利用核平滑和自回归(Auto-Regression, AR)模型建模的方法分别实现了非时变以及时变参数的递推估计。仿真实验的结果表明,与现有的降噪方法相比,该文提出的新算法能够更加有效地抑制含噪混沌信号中的加性噪声。
-
关键词:
- 混沌信号; 粒子滤波; 核平滑
Abstract: A novel algorithm for denoising the contaminated chaotic signals is proposed, which is based on Particle Filtering (PF), and adapted for low SNR, additive non-Gaussian noise and the chaotic dynamic system with unknown parameters. Basic idea behind the proposed algorithm is that, chaotic signal and unknown parameters in the chaotic dynamic system are considered as a high dimension state vector, and the joint posterior probability density of these state vectors can be recursively calculated by utilizing the principle of Particle Filtering, then the optimum estimation of chaotic signal can be attained. In order to overcome the degenerate phenomena caused by the rapid divergence of the chaotic orbits, an effective strategy is taken in the proposed algorithm. Kernel smoothing method and Auto Regression (AR) model are used to recursively estimate the non-time-varying and time-varying parameters, respectively. The simulation results show that, compared with the existing denoising methods, the proposed algorithm can more effectively denoise additive noise in contaminated chaotic signals. -
Zhao Geng and Fang Jin-qing. Classification of chaos-basedcommunication and newest advances in chaotic securetechnique research. Chinese Journal of Nature, 2003, 25(1):21-30.[2]Kocarev L, Szczepanski J, and Amigo J M. Discrete chaos-I:theory[J].IEEE Trans. on Circuits and Systems I: FundamentalTheory and Applications.2006, 53(6):1300-[3]Brocker J, Parlitz U, and Ogorzalek M. Nonlinear noisereduction[J].Proc. IEEE.2002, 90(5):898-918[4]Yuan Jian and Xiao Xian-ci. Extracting the largest lyapunovexponents from the chaotic signals overwhelmed in the noise.Acta Electrnica Sinica, 1997, 25(10): 102-106.[5]Walker D M and Mees A I. Reconstructing nonlineardynamics by extended Kalman filtering[J].Int. J. Bifur. ChaosAppl. Sci. Eng.1998, 8(3):557-570[6]Feng Jiu-chao and Xie Sheng-li. An unscented transformbased filtering algorithm for noisy contaminated chaoticsignals. ISCAS 2006, Kos, May 2006: 2245-2248.[7]Doucet A, Freitas N D, and Gordon N. Sequential MonteCarlo Methods in Practice. New York: Springer, 2001:202-206.[8]Arulampalam M S, Maskell S, and Gordon N. A tutorial onparticle filters for online nonlinear /non-Gaussian Bayesiantracking[J].IEEE Trans. on Signal Processing.2002, 50(2):174-188 期刊类型引用(8)
1. 刘业民,刘晓娴,袁露,曾广论,吕汉峰. 前斜视SAR成像中几何校正问题研究. 航天电子对抗. 2023(02): 13-18 . 百度学术
2. XIONG Xuying,LI Gen,MA Yanheng,CHU Lina. New slant range model and azimuth perturbation resampling based high-squint maneuvering platform SAR imaging. Journal of Systems Engineering and Electronics. 2021(03): 545-558 . 必应学术
3. 丁柏圆,闫海鹏,黄光泉,魏子杰,刘承禹. 高速平台下动目标高分辨成像方法研究. 遥测遥控. 2021(06): 98-106 . 百度学术
4. 党彦锋,梁毅,张罡,梁宇杰,张玉洪. 机动平台俯冲大斜视SAR脉冲重复频率设计. 系统工程与电子技术. 2020(03): 575-581 . 百度学术
5. 孙宁霄,吴琼之,孙林. 基于局部最优匹配的斜视SAR子孔径成像算法. 电子与信息学报. 2017(12): 2851-2859 . 本站查看
6. 曹淑敏,吴文瑾,李新武,刘国林. 斜视SAR重采样误差分析及改进. 遥感信息. 2017(06): 1-7 . 百度学术
7. 董祺,杨泽民,李震宇,孙光才,邢孟道. 基于方位空变斜距模型的大斜视机动平台波数域SAR成像算法. 电子与信息学报. 2016(12): 3166-3173 . 本站查看
8. 董祺,邢孟道,李震宇,孙光才. 一种基于坐标轴旋转的俯冲段大斜视SAR波数域成像算法. 电子与信息学报. 2016(12): 3137-3143 . 本站查看
其他类型引用(19)
-
计量
- 文章访问数: 3035
- HTML全文浏览量: 90
- PDF下载量: 1566
- 被引次数: 27