高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于PCNN赋时矩阵的图像去噪新算法

刘勍 马义德

刘勍, 马义德. 一种基于PCNN赋时矩阵的图像去噪新算法[J]. 电子与信息学报, 2008, 30(8): 1869-1873. doi: 10.3724/SP.J.1146.2006.02059
引用本文: 刘勍, 马义德. 一种基于PCNN赋时矩阵的图像去噪新算法[J]. 电子与信息学报, 2008, 30(8): 1869-1873. doi: 10.3724/SP.J.1146.2006.02059
Liu Qing, Ma Yi-de. A New Algorithm for Noise Reducing of Image Based on PCNN Time Matrix[J]. Journal of Electronics & Information Technology, 2008, 30(8): 1869-1873. doi: 10.3724/SP.J.1146.2006.02059
Citation: Liu Qing, Ma Yi-de. A New Algorithm for Noise Reducing of Image Based on PCNN Time Matrix[J]. Journal of Electronics & Information Technology, 2008, 30(8): 1869-1873. doi: 10.3724/SP.J.1146.2006.02059

一种基于PCNN赋时矩阵的图像去噪新算法

doi: 10.3724/SP.J.1146.2006.02059
基金项目: 

国家自然科学基金(60572011)和甘肃省教育厅科研项目基金(0708- 10)资助课题

A New Algorithm for Noise Reducing of Image Based on PCNN Time Matrix

  • 摘要: 该文从图像脉冲噪声的特点出发,提出了基于脉冲耦合神经网络(Pulse Coupled Neural Networks, PCNN)赋时矩阵的图像去噪算法。赋时矩阵是由PCNN产生的一种从空间图像信息到时间信息的映射图,在图像处理中,赋时矩阵包含有与空间相联系的有用信息。计算机仿真结果表明,通过对PCNN赋时矩阵分析与处理,综合运用相关方法,可以有效地滤除被脉冲噪声污染的图像噪声,且恢复图像的视觉效果明显地好于中值滤波、均值滤波及维纳法得到的结果,其信噪比高、去噪能力强、对边缘和细节的保护性好、适应性强。
  • Yin L and Neuvo Y. Adaptive FIR-WOS hybrid filtering [A].Proc. Int. Symp. Circuits and Syst [C]. San Diego, CA, 1992,6: 2637-2640.[2]Eng How-Lung and Ma Kai-Kuang. Noise adaptive sofetswitchingmedian filter[J].IEEE Trans. on Image Processing.2001, 10(2):242-251[3]Wang J H and Yu M D. Images smoothing by adaptive fuzzyoptimal filter[A].Proc. IEEE Int.Conf.Syst. Man and Cybern[C]. Vancouver, BC, Canada, 1995: 845-848.[4]Wang J H and Lin L D. An improved median filter usingminmax algorithm for image processing [J].Electron Lett.1997, 33(16):1362-1363[5]Sun T and Neuvo Y. Detail-preserving median based filters inimage processing [J].Pattern Recognition Letter.1994, 15(4):341-347[6]Eckhorn R, Reitboeck H J, and Arndtetal M. Feature linkingvia synchronization among distributed assemblies: simulationof results from cat cortex [J].Neural Computation.1990, 2(3):293-307[7]Ranganath H S, Kuntimad G, and Johnson J L.Pulse-coupled neural network for image processing [A]. In:Proceedings of IEEE Southeastcon [C]. New York: IEEEPress, 1995: 37-43.[8]Johnson J L and Padgett M L. PCNN models andapplications [J].IEEE Trans. on Neural Networks.1999,10(3):480-498[9]Kuntimad G and Ranganath H S. Perfect imagesegmentation using pulse coupled neural networks [J].IEEETrans. on Neural Networks.1999, 10(3):591-598[10]Ranganath H S and Kuntimad G. Object detection usingpulse coupled neural networks[J]. IEEE Trans. on NeuralNetworks, 1999, 10(3): 615-620.[11]刘勍, 马义德, 钱志柏.一种基于交叉熵的改进型PCNN 图像自动分割新方法[J]. 中国图象图形学报, 2005, 10(5): 579-584.Liu Q, Ma Y D, and Qian Z B. Automated imagesegmentation using improved PCNN model based oncross-entropy [J]. Journal of Image and Graphics, 2005, 10(5):579-584.[12]Chacon M I and Zimmerman A. PCNNP: A pulse-coupledneural network processor [A]. IEEE International Joint.Conference on Neural Networks [C]. Honolulu Hawaii USA.2002: 1581-1584.[13]Stewart R D, Fermin I, and Opper M. Region growing withpulse-coupled neural networks: an alternative to seededregion growing [J].IEEE Trans. on Neural Network.2002,13(6):1557-1562[14]Ma Y D, Dai R L, and Li L. Image segmentation of embryonicplant cell using pulse-coupled neural networks [J]. ChineseScience Bulletin, 2002, 47(2): 167-172.
  • 加载中
计量
  • 文章访问数:  3099
  • HTML全文浏览量:  74
  • PDF下载量:  870
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-12-26
  • 修回日期:  2007-11-23
  • 刊出日期:  2008-08-19

目录

    /

    返回文章
    返回