梅文华, 王淑波, 邱永红等. 跳频通信[M]. 北京: 国防工业出版社, 2005: 28-84.Mei W H, Wang S B, and Qiu Y H. Frequency HoppingCommunications [M]. Beijing: China National DefenseIndustry Press, 2005: 28-84.[2]Dixon R C. Spread Spectrum Systems [M]. 2nd Ed. New York:John-Wiley Sons, 1976: 26-38.[3]梅文华, 杨义先, 周炯槃. 跳频序列设计理论的研究进展 [J].通信学报, 2003, 24(2): 92-101.Mei W H, Yang Y X, and Zhou Q P. Survey of theoreticalbounds and practical constructions for frequency hoppingsequences [J]. Journal of China Institute of Communications,2003, 24(2): 92-101.[4]彭代渊. 新型扩频序列及其理论界研究[D]. 成都: 西南交通大学, 2005: 81-101.Peng D Y. Investigation of novel spreading sequences andtheir theoretical bounds. Chengdu: Southwest JiaotongUniversity, 2005: 81-101.[5]Titlebaum E L. Time-frequency hop signals Part I: Codingbased upon the theory of linear congruences[J]. IEEE Trans.on AES, 1981, 17(4): 490-493.[6]Shaar A A and Davies P A. Prime sequences: quasi-optimalsequences for OR channel code division multiplexing [J].Electronics Letters.1983, 19(21):888-890[7]Kwong W C, Yang G C, and Zhang J G. 2n prime codes andcoding architecture for optical code-division multiple- access[J].IEEE Trans. on Communications.1996, 44(9):1152-1162[8]Yang G C and Kwong W C. Prime Codes with Applicationsto CDMA Optical and Wireless Networks [M]. London:Artech House, 2002: 43-111.[9]Chi-Fu Hong and Guu-Chang Yang. Concatenated primecodes [J].IEEE Communications Letters.1999, 3(9):260-262[10]Rudolf L and Harald N. Finite Fields [M]. In Encyclopedia ofMathematics and Its Applications, vol. 20, Reading, MA:Addison-Wesley, 1983: 18-107.
|