高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

确定分形函数的局部奇异性指数及其谱

王兆瑞 吕善伟 中村武恒

王兆瑞, 吕善伟, 中村武恒. 确定分形函数的局部奇异性指数及其谱[J]. 电子与信息学报, 2008, 30(2): 290-292. doi: 10.3724/SP.J.1146.2006.01178
引用本文: 王兆瑞, 吕善伟, 中村武恒. 确定分形函数的局部奇异性指数及其谱[J]. 电子与信息学报, 2008, 30(2): 290-292. doi: 10.3724/SP.J.1146.2006.01178
Wang Zhao-rui, Lü Shan-wei, Nakamura Taketsune. Determining the Local Singularity Exponents and Spectrum of the Fractal Function[J]. Journal of Electronics & Information Technology, 2008, 30(2): 290-292. doi: 10.3724/SP.J.1146.2006.01178
Citation: Wang Zhao-rui, Lü Shan-wei, Nakamura Taketsune. Determining the Local Singularity Exponents and Spectrum of the Fractal Function[J]. Journal of Electronics & Information Technology, 2008, 30(2): 290-292. doi: 10.3724/SP.J.1146.2006.01178

确定分形函数的局部奇异性指数及其谱

doi: 10.3724/SP.J.1146.2006.01178

Determining the Local Singularity Exponents and Spectrum of the Fractal Function

  • 摘要: 基于配分函数的多分形形式仅仅提供了信号奇异性指数的全局描述,并没有给出局部信息,然而在实际应用中,揭示出信号的局部奇异性信息往往更具有重要性。该文提出了一种确定信号局部奇异性指数的新算法,构造了一种类似于奇异性谱的直方图,并用来描述信号奇异性的全局统计分布。数字试验验证了该算法的有效性。
  • Peltier R F and Levy Vehel J. Multifractional Brownianmotion: definition and preliminary results[R]. INRIAResearch Report, No. 2645, 1995.[2]Grossmann A and Morlet J. Decomposition of hardyfunctions into square integrable wavelets of constant shape[J].SIAM Journal on Mathematical Analysis.1984, 15(4):723-736[3]Mallat S A. Theory for multiresolution signal decomposition:the wavelet representation[J].IEEE Trans. on PatternAnalysis and Machine Intelligence.1989, 11(7):674-693[4]Percival D B and Walden A T. Wavelet Methods for TimeSeries Analysis[M]. Cambridge: Cambridge University Press,2000: 159-205.[5]Goncalves P and Abry P. Multiple-window wavelet transformand local scaling exponent estimation[A]. In Proceedings ofthe IEEE International Conference on Acoustics, Speech, andSignal Processing[C], Munich, Germany, 1997, 5: 3433-3436.[6]Wang Y, Cavanaugh J E, and Song C. Self-similarity indexestimation via wavelets for locally self-similar processes[J].Journal of Statistical Planning and Inference.2001, 99(11):91-110[7]Levy Vehel J. Signal enhancement based on Hder regularityanalysis[A]. In the IMA Volumes in Mathematics and ItsApplications[C], 2002, 132: 197-209.[8]Mallat S and Hwang W L. Singularity detection andprocessing with wavelets[J].IEEE Trans. on InformationTheory.1992, 38(2):617-643[9]Chan G and Wood A T A. Simulation of multifractionalBrownian motion[A]. In Proceedings in ComputationalStatistics 1998[C], Bristol, Great Britain, 1998: 233-238.
  • 加载中
计量
  • 文章访问数:  3265
  • HTML全文浏览量:  95
  • PDF下载量:  710
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-08-09
  • 修回日期:  2007-01-11
  • 刊出日期:  2008-02-19

目录

    /

    返回文章
    返回