高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非单点模糊支持向量机的判决反馈均衡器

宋恒 王晨 马时平 左继章

宋恒, 王晨, 马时平, 左继章. 基于非单点模糊支持向量机的判决反馈均衡器[J]. 电子与信息学报, 2008, 30(1): 117-120. doi: 10.3724/SP.J.1146.2006.00803
引用本文: 宋恒, 王晨, 马时平, 左继章. 基于非单点模糊支持向量机的判决反馈均衡器[J]. 电子与信息学报, 2008, 30(1): 117-120. doi: 10.3724/SP.J.1146.2006.00803
Song Heng, Wang Chen, Ma Shi-ping, Zuo Ji-zhang . A Decision Feedback Equalizer Based on Non-singleton Fuzzy Support Vector Machine[J]. Journal of Electronics & Information Technology, 2008, 30(1): 117-120. doi: 10.3724/SP.J.1146.2006.00803
Citation: Song Heng, Wang Chen, Ma Shi-ping, Zuo Ji-zhang . A Decision Feedback Equalizer Based on Non-singleton Fuzzy Support Vector Machine[J]. Journal of Electronics & Information Technology, 2008, 30(1): 117-120. doi: 10.3724/SP.J.1146.2006.00803

基于非单点模糊支持向量机的判决反馈均衡器

doi: 10.3724/SP.J.1146.2006.00803
基金项目: 

国家部委基金(KK2003123)资助课题

A Decision Feedback Equalizer Based on Non-singleton Fuzzy Support Vector Machine

  • 摘要: 该文提出了一种具有较强抗突发干扰能力的非单点模糊支持向量机判决反馈均衡器。该方法以支持向量机为框架,采用具有前置滤波特性的非单点模糊高斯核函数,利用梯度下降法调整核函数中的可调参数。通过仿真实验,并与支持向量机判决反馈均衡器和传统判决反馈均衡器进行比较,结果证明该方法具有优良的非线性均衡能力和抗突发干扰能力。
  • Mlesserchimitt D C. A geometric theory- of intersymbol interference. Part I:zero-forcin; and decision feedback equalization. Part II:performance of the maimum likelihood detector[J]. Bell Syst. Tech,1973, 52(9): 1433-1539[2]Cibson C .1, Siu S, and CowanC F N. The application of nonlinear structures to the reconstruction of binary- signals[J]..IEEE Trans.on SP.1991,39(8):1877-1885[3]Chen S, Cibson C .1, and Cowan C F N, ct al.. Adnptive equalization of finite non-linear channels using multilnyer[4]perceptions[J]. Signal Processing, 1990, 20(2): 107-119[5]Chen S, Mlclaughlin S, and Mulgrew B. Complex vluedradial basis function networks: application to digital communications channel equalization (Part II)[J].Signal Processing.1994, 36(2):175-133[6]Mlulgre二一B. Applying radial basis functions[J]. IEEE Signal Processing Magazinc, 1996, 13(2): 50-65[7]Yee M1 S, Yeap B L, and Hanzo L. Radial basis function-assisted turbo equalization[J]. IEEE Trans. on Co二二。,20034(51): 664-675[8]Vapnik V N. The Nature of Statistical Learning Theory[M] New York: Springer-Verlag, 1995(中文版:张学工译.统计学习理论的本质[M]北京:清华大学出版社,2000. )[9]Chen S,Gunn S,and Harris C J.Decision feedback equalizer design using support vector machines[J].Proc.Inst.Elect.Eng.Vision,Image,Signal Processing.2000,147(3):213-219[10]Albu F and Martinez D.The application of support vector machines with Gaussian kernels for overcoming cochannel interference[C].Proc.9th IEEE Int.Workshop Neural Networks Signal Processing,Madison,WI,Aug.23-25,1999:49-57.[11]Chen S,Samingan A K,and Hanzo L.Support vector machine multiuser receiver for DS-CDMA signals in multipath channels[J].IEEE Trans.on Neural Networks.2001, 12(5):604-611[12]莫玮.神经网络在自适应均衡中的应用研究[D].[博士论文],西安电子科技大学,2000.[13]边肇祺,张学工.模式识别(第二版)[M].北京:清华大学出版,社,2000:300-303.[14]王士同.模糊系统、模糊神经网络及应用程序设计[M].上海:上海科学技术文献出版社,1998:20-24.[15]何平,徐炳祥,张辉等.时变衰落信道下的自适应均衡技术[J].电子学报,1993,21(4):85-89.[16]Zadeh L A.Outline of a new approach to the analysis of complex systems and decision processes[J].IEEE Trans.on Systems,Manand Cybernetics,1973,3(1):28-44.[17]Ma Jun-shui,Theiler J,and Perkins S.Accurate on-line support vector regression[J].Neural Computation.2003,15(11):2683-2704
  • 加载中
计量
  • 文章访问数:  3222
  • HTML全文浏览量:  77
  • PDF下载量:  939
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-06-12
  • 修回日期:  2006-10-24
  • 刊出日期:  2008-01-19

目录

    /

    返回文章
    返回